#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Macs;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Modes.Gcm;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Modes
{
///
/// Implements the Galois/Counter mode (GCM) detailed in
/// NIST Special Publication 800-38D.
///
public sealed class GcmBlockCipher
: IAeadBlockCipher
{
private const int BlockSize = 16;
byte[] ctrBlock = new byte[BlockSize];
private readonly IBlockCipher cipher;
private readonly IGcmMultiplier multiplier;
private IGcmExponentiator exp;
// These fields are set by Init and not modified by processing
private bool forEncryption;
private bool initialised;
private int macSize;
private byte[] lastKey;
private byte[] nonce;
private byte[] initialAssociatedText;
private byte[] H;
private byte[] J0;
// These fields are modified during processing
private byte[] bufBlock;
private byte[] macBlock;
private byte[] S, S_at, S_atPre;
private byte[] counter;
private uint blocksRemaining;
private int bufOff;
private ulong totalLength;
private byte[] atBlock;
private int atBlockPos;
private ulong atLength;
private ulong atLengthPre;
public GcmBlockCipher(
IBlockCipher c)
: this(c, null)
{
}
public GcmBlockCipher(
IBlockCipher c,
IGcmMultiplier m)
{
if (c.GetBlockSize() != BlockSize)
throw new ArgumentException("cipher required with a block size of " + BlockSize + ".");
if (m == null)
{
// TODO Consider a static property specifying default multiplier
m = new Tables8kGcmMultiplier();
}
this.cipher = c;
this.multiplier = m;
}
public /*virtual*/ string AlgorithmName
{
get { return cipher.AlgorithmName + "/GCM"; }
}
public IBlockCipher GetUnderlyingCipher()
{
return cipher;
}
public /*virtual*/ int GetBlockSize()
{
return BlockSize;
}
///
/// MAC sizes from 32 bits to 128 bits (must be a multiple of 8) are supported. The default is 128 bits.
/// Sizes less than 96 are not recommended, but are supported for specialized applications.
///
public /*virtual*/ void Init(
bool forEncryption,
ICipherParameters parameters)
{
this.forEncryption = forEncryption;
this.macBlock = null;
this.initialised = true;
KeyParameter keyParam;
byte[] newNonce = null;
if (parameters is AeadParameters)
{
AeadParameters param = (AeadParameters)parameters;
newNonce = param.GetNonce();
initialAssociatedText = param.GetAssociatedText();
int macSizeBits = param.MacSize;
if (macSizeBits < 32 || macSizeBits > 128 || macSizeBits % 8 != 0)
{
throw new ArgumentException("Invalid value for MAC size: " + macSizeBits);
}
macSize = macSizeBits / 8;
keyParam = param.Key;
}
else if (parameters is ParametersWithIV)
{
ParametersWithIV param = (ParametersWithIV)parameters;
newNonce = param.GetIV();
initialAssociatedText = null;
macSize = 16;
keyParam = (KeyParameter)param.Parameters;
}
else
{
throw new ArgumentException("invalid parameters passed to GCM");
}
int bufLength = forEncryption ? BlockSize : (BlockSize + macSize);
this.bufBlock = new byte[bufLength];
if (newNonce == null || newNonce.Length < 1)
{
throw new ArgumentException("IV must be at least 1 byte");
}
if (forEncryption)
{
if (nonce != null && Arrays.AreEqual(nonce, newNonce))
{
if (keyParam == null)
{
throw new ArgumentException("cannot reuse nonce for GCM encryption");
}
if (lastKey != null && Arrays.AreEqual(lastKey, keyParam.GetKey()))
{
throw new ArgumentException("cannot reuse nonce for GCM encryption");
}
}
}
nonce = newNonce;
if (keyParam != null)
{
lastKey = keyParam.GetKey();
}
// TODO Restrict macSize to 16 if nonce length not 12?
// Cipher always used in forward mode
// if keyParam is null we're reusing the last key.
if (keyParam != null)
{
cipher.Init(true, keyParam);
this.H = new byte[BlockSize];
cipher.ProcessBlock(H, 0, H, 0);
// if keyParam is null we're reusing the last key and the multiplier doesn't need re-init
multiplier.Init(H);
exp = null;
}
else if (this.H == null)
{
throw new ArgumentException("Key must be specified in initial init");
}
this.J0 = new byte[BlockSize];
if (nonce.Length == 12)
{
Array.Copy(nonce, 0, J0, 0, nonce.Length);
this.J0[BlockSize - 1] = 0x01;
}
else
{
gHASH(J0, nonce, nonce.Length);
byte[] X = new byte[BlockSize];
Pack.UInt64_To_BE((ulong)nonce.Length * 8UL, X, 8);
gHASHBlock(J0, X);
}
this.S = new byte[BlockSize];
this.S_at = new byte[BlockSize];
this.S_atPre = new byte[BlockSize];
this.atBlock = new byte[BlockSize];
this.atBlockPos = 0;
this.atLength = 0;
this.atLengthPre = 0;
this.counter = Arrays.Clone(J0);
this.blocksRemaining = uint.MaxValue - 1; // page 8, len(P) <= 2^39 - 256, 1 block used by tag
this.bufOff = 0;
this.totalLength = 0;
if (initialAssociatedText != null)
{
ProcessAadBytes(initialAssociatedText, 0, initialAssociatedText.Length);
}
}
public /*virtual*/ byte[] GetMac()
{
return macBlock == null
? new byte[macSize]
: Arrays.Clone(macBlock);
}
public /*virtual*/ int GetOutputSize(
int len)
{
int totalData = len + bufOff;
if (forEncryption)
{
return totalData + macSize;
}
return totalData < macSize ? 0 : totalData - macSize;
}
public /*virtual*/ int GetUpdateOutputSize(
int len)
{
int totalData = len + bufOff;
if (!forEncryption)
{
if (totalData < macSize)
{
return 0;
}
totalData -= macSize;
}
return totalData - totalData % BlockSize;
}
public /*virtual*/ void ProcessAadByte(byte input)
{
CheckStatus();
atBlock[atBlockPos] = input;
if (++atBlockPos == BlockSize)
{
// Hash each block as it fills
gHASHBlock(S_at, atBlock);
atBlockPos = 0;
atLength += BlockSize;
}
}
public /*virtual*/ void ProcessAadBytes(byte[] inBytes, int inOff, int len)
{
CheckStatus();
for (int i = 0; i < len; ++i)
{
atBlock[atBlockPos] = inBytes[inOff + i];
if (++atBlockPos == BlockSize)
{
// Hash each block as it fills
gHASHBlock(S_at, atBlock);
atBlockPos = 0;
atLength += BlockSize;
}
}
}
private void InitCipher()
{
if (atLength > 0)
{
Array.Copy(S_at, 0, S_atPre, 0, BlockSize);
atLengthPre = atLength;
}
// Finish hash for partial AAD block
if (atBlockPos > 0)
{
gHASHPartial(S_atPre, atBlock, 0, atBlockPos);
atLengthPre += (uint)atBlockPos;
}
if (atLengthPre > 0)
{
Array.Copy(S_atPre, 0, S, 0, BlockSize);
}
}
public /*virtual*/ int ProcessByte(
byte input,
byte[] output,
int outOff)
{
CheckStatus();
bufBlock[bufOff] = input;
if (++bufOff == bufBlock.Length)
{
ProcessBlock(bufBlock, 0, output, outOff);
if (forEncryption)
{
bufOff = 0;
}
else
{
Array.Copy(bufBlock, BlockSize, bufBlock, 0, macSize);
bufOff = macSize;
}
return BlockSize;
}
return 0;
}
public /*virtual*/ int ProcessBytes(
byte[] input,
int inOff,
int len,
byte[] output,
int outOff)
{
CheckStatus();
Check.DataLength(input, inOff, len, "input buffer too short");
int resultLen = 0;
if (forEncryption)
{
if (bufOff != 0)
{
while (len > 0)
{
--len;
bufBlock[bufOff] = input[inOff++];
if (++bufOff == BlockSize)
{
ProcessBlock(bufBlock, 0, output, outOff);
bufOff = 0;
resultLen += BlockSize;
break;
}
}
}
while (len >= BlockSize)
{
ProcessBlock(input, inOff, output, outOff + resultLen);
inOff += BlockSize;
len -= BlockSize;
resultLen += BlockSize;
}
if (len > 0)
{
Array.Copy(input, inOff, bufBlock, 0, len);
bufOff = len;
}
}
else
{
for (int i = 0; i < len; ++i)
{
bufBlock[bufOff] = input[inOff + i];
if (++bufOff == bufBlock.Length)
{
ProcessBlock(bufBlock, 0, output, outOff + resultLen);
Array.Copy(bufBlock, BlockSize, bufBlock, 0, macSize);
bufOff = macSize;
resultLen += BlockSize;
}
}
}
return resultLen;
}
public int DoFinal(byte[] output, int outOff)
{
CheckStatus();
if (totalLength == 0)
{
InitCipher();
}
int extra = bufOff;
if (forEncryption)
{
Check.OutputLength(output, outOff, extra + macSize, "Output buffer too short");
}
else
{
if (extra < macSize)
throw new InvalidCipherTextException("data too short");
extra -= macSize;
Check.OutputLength(output, outOff, extra, "Output buffer too short");
}
if (extra > 0)
{
ProcessPartial(bufBlock, 0, extra, output, outOff);
}
atLength += (uint)atBlockPos;
if (atLength > atLengthPre)
{
/*
* Some AAD was sent after the cipher started. We determine the difference b/w the hash value
* we actually used when the cipher started (S_atPre) and the final hash value calculated (S_at).
* Then we carry this difference forward by multiplying by H^c, where c is the number of (full or
* partial) cipher-text blocks produced, and adjust the current hash.
*/
// Finish hash for partial AAD block
if (atBlockPos > 0)
{
gHASHPartial(S_at, atBlock, 0, atBlockPos);
}
// Find the difference between the AAD hashes
if (atLengthPre > 0)
{
GcmUtilities.Xor(S_at, S_atPre);
}
// Number of cipher-text blocks produced
long c = (long)(((totalLength * 8) + 127) >> 7);
// Calculate the adjustment factor
byte[] H_c = new byte[16];
if (exp == null)
{
exp = new Tables1kGcmExponentiator();
exp.Init(H);
}
exp.ExponentiateX(c, H_c);
// Carry the difference forward
GcmUtilities.Multiply(S_at, H_c);
// Adjust the current hash
GcmUtilities.Xor(S, S_at);
}
// Final gHASH
byte[] X = new byte[BlockSize];
Pack.UInt64_To_BE(atLength * 8UL, X, 0);
Pack.UInt64_To_BE(totalLength * 8UL, X, 8);
gHASHBlock(S, X);
// T = MSBt(GCTRk(J0,S))
byte[] tag = new byte[BlockSize];
cipher.ProcessBlock(J0, 0, tag, 0);
GcmUtilities.Xor(tag, S);
int resultLen = extra;
// We place into macBlock our calculated value for T
this.macBlock = new byte[macSize];
Array.Copy(tag, 0, macBlock, 0, macSize);
if (forEncryption)
{
// Append T to the message
Array.Copy(macBlock, 0, output, outOff + bufOff, macSize);
resultLen += macSize;
}
else
{
// Retrieve the T value from the message and compare to calculated one
byte[] msgMac = new byte[macSize];
Array.Copy(bufBlock, extra, msgMac, 0, macSize);
if (!Arrays.ConstantTimeAreEqual(this.macBlock, msgMac))
throw new InvalidCipherTextException("mac check in GCM failed");
}
Reset(false);
return resultLen;
}
public /*virtual*/ void Reset()
{
Reset(true);
}
private void Reset(
bool clearMac)
{
cipher.Reset();
// note: we do not reset the nonce.
S = new byte[BlockSize];
S_at = new byte[BlockSize];
S_atPre = new byte[BlockSize];
atBlock = new byte[BlockSize];
atBlockPos = 0;
atLength = 0;
atLengthPre = 0;
counter = Arrays.Clone(J0);
blocksRemaining = uint.MaxValue - 1;
bufOff = 0;
totalLength = 0;
if (bufBlock != null)
{
Arrays.Fill(bufBlock, 0);
}
if (clearMac)
{
macBlock = null;
}
if (forEncryption)
{
initialised = false;
}
else
{
if (initialAssociatedText != null)
{
ProcessAadBytes(initialAssociatedText, 0, initialAssociatedText.Length);
}
}
}
private void ProcessBlock(byte[] buf, int bufOff, byte[] output, int outOff)
{
Check.OutputLength(output, outOff, BlockSize, "Output buffer too short");
if (totalLength == 0)
{
InitCipher();
}
//byte[] ctrBlock = new byte[BlockSize];
GetNextCtrBlock(ctrBlock);
if (forEncryption)
{
GcmUtilities.Xor(ctrBlock, buf, bufOff);
gHASHBlock(S, ctrBlock);
Array.Copy(ctrBlock, 0, output, outOff, BlockSize);
}
else
{
gHASHBlock(S, buf, bufOff);
GcmUtilities.Xor(ctrBlock, 0, buf, bufOff, output, outOff);
}
totalLength += BlockSize;
}
private void ProcessPartial(byte[] buf, int off, int len, byte[] output, int outOff)
{
//byte[] ctrBlock = new byte[BlockSize];
GetNextCtrBlock(ctrBlock);
if (forEncryption)
{
GcmUtilities.Xor(buf, off, ctrBlock, 0, len);
gHASHPartial(S, buf, off, len);
}
else
{
gHASHPartial(S, buf, off, len);
GcmUtilities.Xor(buf, off, ctrBlock, 0, len);
}
Array.Copy(buf, off, output, outOff, len);
totalLength += (uint)len;
}
private void gHASH(byte[] Y, byte[] b, int len)
{
for (int pos = 0; pos < len; pos += BlockSize)
{
int num = System.Math.Min(len - pos, BlockSize);
gHASHPartial(Y, b, pos, num);
}
}
private void gHASHBlock(byte[] Y, byte[] b)
{
GcmUtilities.Xor(Y, b);
multiplier.MultiplyH(Y);
}
private void gHASHBlock(byte[] Y, byte[] b, int off)
{
GcmUtilities.Xor(Y, b, off);
multiplier.MultiplyH(Y);
}
private void gHASHPartial(byte[] Y, byte[] b, int off, int len)
{
GcmUtilities.Xor(Y, b, off, len);
multiplier.MultiplyH(Y);
}
private void GetNextCtrBlock(byte[] block)
{
if (blocksRemaining == 0)
throw new InvalidOperationException("Attempt to process too many blocks");
blocksRemaining--;
uint c = 1;
c += counter[15]; counter[15] = (byte)c; c >>= 8;
c += counter[14]; counter[14] = (byte)c; c >>= 8;
c += counter[13]; counter[13] = (byte)c; c >>= 8;
c += counter[12]; counter[12] = (byte)c;
cipher.ProcessBlock(counter, 0, block, 0);
}
private void CheckStatus()
{
if (!initialised)
{
if (forEncryption)
{
throw new InvalidOperationException("GCM cipher cannot be reused for encryption");
}
throw new InvalidOperationException("GCM cipher needs to be initialised");
}
}
}
}
#pragma warning restore
#endif