230 lines
7.3 KiB
C#
230 lines
7.3 KiB
C#
using UnityEngine;
|
|
using Unity.Mathematics;
|
|
using Pathfinding.Pooling;
|
|
|
|
namespace Pathfinding {
|
|
/// <summary>
|
|
/// Finds a path in a random direction from the start node.
|
|
///
|
|
/// Terminates and returns when G \>= length (passed to the constructor) + RandomPath.spread or when there are no more nodes left to search.
|
|
///
|
|
/// <code>
|
|
///
|
|
/// // Call a RandomPath call like this, assumes that a Seeker is attached to the GameObject
|
|
///
|
|
/// // The path will be returned when the path is over a specified length (or more accurately when the traversal cost is greater than a specified value).
|
|
/// // A score of 1000 is approximately equal to the cost of moving one world unit.
|
|
/// int theGScoreToStopAt = 50000;
|
|
///
|
|
/// // Create a path object
|
|
/// RandomPath path = RandomPath.Construct(transform.position, theGScoreToStopAt);
|
|
/// // Determines the variation in path length that is allowed
|
|
/// path.spread = 5000;
|
|
///
|
|
/// // Get the Seeker component which must be attached to this GameObject
|
|
/// Seeker seeker = GetComponent<Seeker>();
|
|
///
|
|
/// // Start the path and return the result to MyCompleteFunction (which is a function you have to define, the name can of course be changed)
|
|
/// seeker.StartPath(path, MyCompleteFunction);
|
|
///
|
|
/// </code>
|
|
///
|
|
/// [Open online documentation to see videos]
|
|
///
|
|
/// See: wander (view in online documentation for working links)
|
|
/// </summary>
|
|
public class RandomPath : ABPath {
|
|
/// <summary>
|
|
/// G score to stop searching at.
|
|
/// The G score is rougly the distance to get from the start node to a node multiplied by 1000 (per default, see Pathfinding.Int3.Precision), plus any penalties.
|
|
///
|
|
/// [Open online documentation to see videos]
|
|
/// </summary>
|
|
public int searchLength;
|
|
|
|
/// <summary>
|
|
/// All G scores between <see cref="searchLength"/> and <see cref="searchLength"/>+<see cref="spread"/> are valid end points, a random one of them is chosen as the final point.
|
|
/// On grid graphs a low spread usually works (but keep it higher than nodeSize*1000 since that it the default cost of moving between two nodes), on NavMesh graphs
|
|
/// I would recommend a higher spread so it can evaluate more nodes.
|
|
///
|
|
/// [Open online documentation to see videos]
|
|
/// </summary>
|
|
public int spread = 5000;
|
|
|
|
/// <summary>
|
|
/// If an <see cref="aim"/> is set, the higher this value is, the more it will try to reach <see cref="aim"/>.
|
|
///
|
|
/// Recommended values are between 0 and 10.
|
|
/// </summary>
|
|
public float aimStrength;
|
|
|
|
/// <summary>Currently chosen end node</summary>
|
|
uint chosenPathNodeIndex;
|
|
uint chosenPathNodeGScore;
|
|
|
|
/// <summary>
|
|
/// The node with the highest G score which is still lower than <see cref="searchLength"/>.
|
|
/// Used as a backup if a node with a G score higher than <see cref="searchLength"/> could not be found
|
|
/// </summary>
|
|
uint maxGScorePathNodeIndex;
|
|
|
|
/// <summary>The G score of <see cref="maxGScorePathNodeIndex"/></summary>
|
|
uint maxGScore;
|
|
|
|
/// <summary>
|
|
/// An aim can be used to guide the pathfinder to not take totally random paths.
|
|
/// For example you might want your AI to continue in generally the same direction as before, then you can specify
|
|
/// aim to be transform.postion + transform.forward*10 which will make it more often take paths nearer that point
|
|
/// See: <see cref="aimStrength"/>
|
|
/// </summary>
|
|
public Vector3 aim;
|
|
|
|
int nodesEvaluatedRep;
|
|
|
|
/// <summary>Random number generator</summary>
|
|
readonly System.Random rnd = new System.Random();
|
|
|
|
protected override bool hasEndPoint => false;
|
|
|
|
public override bool endPointKnownBeforeCalculation => false;
|
|
|
|
protected override void Reset () {
|
|
base.Reset();
|
|
|
|
searchLength = 5000;
|
|
spread = 5000;
|
|
|
|
aimStrength = 0.0f;
|
|
chosenPathNodeIndex = uint.MaxValue;
|
|
maxGScorePathNodeIndex = uint.MaxValue;
|
|
chosenPathNodeGScore = 0;
|
|
maxGScore = 0;
|
|
aim = Vector3.zero;
|
|
|
|
nodesEvaluatedRep = 0;
|
|
}
|
|
|
|
public RandomPath () {}
|
|
|
|
public static RandomPath Construct (Vector3 start, int length, OnPathDelegate callback = null) {
|
|
var p = PathPool.GetPath<RandomPath>();
|
|
|
|
p.Setup(start, length, callback);
|
|
return p;
|
|
}
|
|
|
|
protected RandomPath Setup (Vector3 start, int length, OnPathDelegate callback) {
|
|
this.callback = callback;
|
|
|
|
searchLength = length;
|
|
|
|
originalStartPoint = start;
|
|
originalEndPoint = Vector3.zero;
|
|
|
|
startPoint = start;
|
|
endPoint = Vector3.zero;
|
|
|
|
return this;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calls callback to return the calculated path.
|
|
/// See: <see cref="callback"/>
|
|
/// </summary>
|
|
protected override void ReturnPath () {
|
|
if (path != null && path.Count > 0) {
|
|
originalEndPoint = endPoint;
|
|
}
|
|
if (callback != null) {
|
|
callback(this);
|
|
}
|
|
}
|
|
|
|
protected override void Prepare () {
|
|
var startNNInfo = GetNearest(startPoint);
|
|
|
|
startPoint = startNNInfo.position;
|
|
endPoint = startPoint;
|
|
|
|
#if ASTARDEBUG
|
|
Debug.DrawLine((Vector3)startNNInfo.node.position, startPoint, Color.blue);
|
|
#endif
|
|
|
|
if (startNNInfo.node == null) {
|
|
FailWithError("Couldn't find close nodes to the start point");
|
|
return;
|
|
}
|
|
|
|
if (!CanTraverse(startNNInfo.node)) {
|
|
FailWithError("The node closest to the start point could not be traversed");
|
|
return;
|
|
}
|
|
|
|
heuristicScale = aimStrength;
|
|
|
|
pathHandler.AddTemporaryNode(new TemporaryNode {
|
|
type = TemporaryNodeType.Start,
|
|
position = (Int3)startNNInfo.position,
|
|
associatedNode = startNNInfo.node.NodeIndex,
|
|
});
|
|
heuristicObjective = new HeuristicObjective((int3)(Int3)aim, heuristic, heuristicScale);
|
|
AddStartNodesToHeap();
|
|
}
|
|
|
|
protected override void OnHeapExhausted () {
|
|
if (chosenPathNodeIndex == uint.MaxValue && maxGScorePathNodeIndex != uint.MaxValue) {
|
|
chosenPathNodeIndex = maxGScorePathNodeIndex;
|
|
chosenPathNodeGScore = maxGScore;
|
|
}
|
|
|
|
if (chosenPathNodeIndex != uint.MaxValue) {
|
|
OnFoundEndNode(chosenPathNodeIndex, 0, chosenPathNodeGScore);
|
|
} else {
|
|
FailWithError("Not a single node found to search");
|
|
}
|
|
}
|
|
|
|
protected override void OnFoundEndNode (uint pathNode, uint hScore, uint gScore) {
|
|
if (pathHandler.IsTemporaryNode(pathNode)) {
|
|
base.OnFoundEndNode(pathNode, hScore, gScore);
|
|
} else {
|
|
// The target node is a normal node.
|
|
var node = pathHandler.GetNode(pathNode);
|
|
endPoint = node.RandomPointOnSurface();
|
|
|
|
cost = gScore;
|
|
CompleteState = PathCompleteState.Complete;
|
|
Trace(pathNode);
|
|
}
|
|
}
|
|
|
|
public override void OnVisitNode (uint pathNode, uint hScore, uint gScore) {
|
|
// This method may be called multiple times without checking if the path is complete yet.
|
|
if (CompleteState != PathCompleteState.NotCalculated) return;
|
|
|
|
if (gScore >= searchLength) {
|
|
if (gScore <= searchLength+spread) {
|
|
nodesEvaluatedRep++;
|
|
|
|
// Use reservoir sampling to pick a node from the ones with the highest G score
|
|
if (rnd.NextDouble() <= 1.0f/nodesEvaluatedRep) {
|
|
chosenPathNodeIndex = pathNode;
|
|
chosenPathNodeGScore = gScore;
|
|
}
|
|
} else {
|
|
// If no node was in the valid range of G scores, then fall back to picking one right outside valid range
|
|
if (chosenPathNodeIndex == uint.MaxValue) {
|
|
chosenPathNodeIndex = pathNode;
|
|
chosenPathNodeGScore = gScore;
|
|
}
|
|
|
|
OnFoundEndNode(chosenPathNodeIndex, 0, chosenPathNodeGScore);
|
|
}
|
|
} else if (gScore > maxGScore) {
|
|
maxGScore = gScore;
|
|
maxGScorePathNodeIndex = pathNode;
|
|
}
|
|
}
|
|
}
|
|
}
|