444 lines
14 KiB
C#

#pragma warning disable 414
using System.Collections.Generic;
using UnityEngine;
using Unity.Mathematics;
using Unity.Collections;
using Pathfinding.Pooling;
using Pathfinding.Collections;
namespace Pathfinding.Graphs.Util {
using Pathfinding.Drawing;
public enum HeuristicOptimizationMode {
None,
Random,
RandomSpreadOut,
Custom
}
/// <summary>
/// Implements heuristic optimizations.
///
/// See: heuristic-opt
/// See: Game AI Pro - Pathfinding Architecture Optimizations by Steve Rabin and Nathan R. Sturtevant
/// </summary>
[System.Serializable]
public class EuclideanEmbedding {
/// <summary>
/// If heuristic optimization should be used and how to place the pivot points.
/// See: heuristic-opt
/// See: Game AI Pro - Pathfinding Architecture Optimizations by Steve Rabin and Nathan R. Sturtevant
/// </summary>
public HeuristicOptimizationMode mode;
public int seed;
/// <summary>All children of this transform will be used as pivot points</summary>
public Transform pivotPointRoot;
public int spreadOutCount = 1;
[System.NonSerialized]
public bool dirty;
/// <summary>
/// Costs laid out as n*[int],n*[int],n*[int] where n is the number of pivot points.
/// Each node has n integers which is the cost from that node to the pivot node.
/// They are at around the same place in the array for simplicity and for cache locality.
///
/// cost(nodeIndex, pivotIndex) = costs[nodeIndex*pivotCount+pivotIndex]
/// </summary>
public NativeArray<uint> costs { get; private set; }
public int pivotCount { get; private set; }
GraphNode[] pivots;
/*
* Seed for random number generator.
* Must not be zero
*/
const uint ra = 12820163;
/*
* Seed for random number generator.
* Must not be zero
*/
const uint rc = 1140671485;
/*
* Parameter for random number generator.
*/
uint rval;
/// <summary>
/// Simple linear congruential generator.
/// See: http://en.wikipedia.org/wiki/Linear_congruential_generator
/// </summary>
uint GetRandom () {
rval = (ra*rval + rc);
return rval;
}
public void OnDisable () {
if (costs.IsCreated) costs.Dispose();
costs = default;
pivotCount = 0;
}
public static uint GetHeuristic (UnsafeSpan<uint> costs, uint pivotCount, uint nodeIndex1, uint nodeIndex2) {
uint mx = 0;
// TODO: Force pivotCount to be a multiple of 4 and use SIMD for performance
if (nodeIndex1 < costs.Length && nodeIndex2 < costs.Length) {
for (uint i = 0; i < pivotCount; i++) {
var c1 = costs[nodeIndex1*pivotCount+i];
var c2 = costs[nodeIndex2*pivotCount+i];
// If either of the nodes have an unknown cost to the pivot point,
// then we cannot use this pivot to calculate a heuristic
if (c1 == uint.MaxValue || c2 == uint.MaxValue) continue;
uint d = (uint)math.abs((int)c1 - (int)c2);
if (d > mx) mx = d;
}
}
return mx;
}
void GetClosestWalkableNodesToChildrenRecursively (Transform tr, List<GraphNode> nodes) {
foreach (Transform ch in tr) {
var info = AstarPath.active.GetNearest(ch.position, NNConstraint.Walkable);
if (info.node != null && info.node.Walkable) {
nodes.Add(info.node);
}
GetClosestWalkableNodesToChildrenRecursively(ch, nodes);
}
}
/// <summary>
/// Pick N random walkable nodes from all nodes in all graphs and add them to the buffer.
///
/// Here we select N random nodes from a stream of nodes.
/// Probability of choosing the first N nodes is 1
/// Probability of choosing node i is min(N/i,1)
/// A selected node will replace a random node of the previously
/// selected ones.
///
/// See: https://en.wikipedia.org/wiki/Reservoir_sampling
/// </summary>
void PickNRandomNodes (int count, List<GraphNode> buffer) {
int n = 0;
var graphs = AstarPath.active.graphs;
// Loop through all graphs
for (int j = 0; j < graphs.Length; j++) {
// Loop through all nodes in the graph
graphs[j].GetNodes(node => {
if (!node.Destroyed && node.Walkable) {
n++;
if ((GetRandom() % n) < count) {
if (buffer.Count < count) {
buffer.Add(node);
} else {
buffer[(int)(n%buffer.Count)] = node;
}
}
}
});
}
}
GraphNode PickAnyWalkableNode () {
var graphs = AstarPath.active.graphs;
GraphNode first = null;
// Find any node in the graphs
for (int j = 0; j < graphs.Length; j++) {
graphs[j].GetNodes(node => {
if (node != null && node.Walkable && first == null) {
first = node;
}
});
}
return first;
}
public void RecalculatePivots () {
if (mode == HeuristicOptimizationMode.None) {
pivotCount = 0;
pivots = null;
return;
}
// Reset the random number generator
rval = (uint)seed;
// Get a List<GraphNode> from a pool
var pivotList = Pathfinding.Pooling.ListPool<GraphNode>.Claim();
switch (mode) {
case HeuristicOptimizationMode.Custom:
if (pivotPointRoot == null) throw new System.Exception("heuristicOptimizationMode is HeuristicOptimizationMode.Custom, " +
"but no 'customHeuristicOptimizationPivotsRoot' is set");
GetClosestWalkableNodesToChildrenRecursively(pivotPointRoot, pivotList);
break;
case HeuristicOptimizationMode.Random:
PickNRandomNodes(spreadOutCount, pivotList);
break;
case HeuristicOptimizationMode.RandomSpreadOut:
if (pivotPointRoot != null) {
GetClosestWalkableNodesToChildrenRecursively(pivotPointRoot, pivotList);
}
// If no pivot points were found, fall back to picking arbitrary nodes
if (pivotList.Count == 0) {
GraphNode first = PickAnyWalkableNode();
if (first != null) {
pivotList.Add(first);
} else {
Pathfinding.Pooling.ListPool<GraphNode>.Release(ref pivotList);
pivots = new GraphNode[0];
return;
}
}
// Fill remaining slots with null
int toFill = spreadOutCount - pivotList.Count;
for (int i = 0; i < toFill; i++) pivotList.Add(null);
break;
default:
throw new System.Exception("Invalid HeuristicOptimizationMode: " + mode);
}
pivots = pivotList.ToArray();
Pathfinding.Pooling.ListPool<GraphNode>.Release(ref pivotList);
}
class EuclideanEmbeddingSearchPath : Path {
public UnsafeSpan<uint> costs;
public uint costIndexStride;
public uint pivotIndex;
public GraphNode startNode;
public uint furthestNodeScore;
public GraphNode furthestNode;
public static EuclideanEmbeddingSearchPath Construct (UnsafeSpan<uint> costs, uint costIndexStride, uint pivotIndex, GraphNode startNode) {
var p = PathPool.GetPath<EuclideanEmbeddingSearchPath>();
p.costs = costs;
p.costIndexStride = costIndexStride;
p.pivotIndex = pivotIndex;
p.startNode = startNode;
p.furthestNodeScore = 0;
p.furthestNode = null;
return p;
}
protected override void OnFoundEndNode (uint pathNode, uint hScore, uint gScore) {
throw new System.InvalidOperationException();
}
protected override void OnHeapExhausted () {
CompleteState = PathCompleteState.Complete;
}
public override void OnVisitNode (uint pathNode, uint hScore, uint gScore) {
if (!pathHandler.IsTemporaryNode(pathNode)) {
// Get the node and then the node index from that.
// This is because a triangle mesh node will have 3 path nodes,
// but we want to collapse those to the same index as the original node.
var node = pathHandler.GetNode(pathNode);
uint baseIndex = node.NodeIndex*costIndexStride;
// EnsureCapacity(idx);
costs[baseIndex + pivotIndex] = math.min(costs[baseIndex + pivotIndex], gScore);
// Find the minimum distance from the node to all existing pivot points
uint mx = uint.MaxValue;
for (int p = 0; p <= pivotIndex; p++) mx = math.min(mx, costs[baseIndex + (uint)p]);
// Pick the node which has the largest minimum distance to the existing pivot points
// (i.e pick the one furthest away from the existing ones)
if (mx > furthestNodeScore || furthestNode == null) {
furthestNodeScore = mx;
furthestNode = node;
}
}
}
protected override void Prepare () {
pathHandler.AddTemporaryNode(new TemporaryNode {
associatedNode = startNode.NodeIndex,
position = startNode.position,
type = TemporaryNodeType.Start,
});
heuristicObjective = new HeuristicObjective(0, Heuristic.None, 0.0f);
MarkNodesAdjacentToTemporaryEndNodes();
AddStartNodesToHeap();
}
}
public void RecalculateCosts () {
if (pivots == null) RecalculatePivots();
if (mode == HeuristicOptimizationMode.None) return;
// Use a nested call to avoid allocating a delegate object
// even when we just do an early return.
RecalculateCostsInner();
}
void RecalculateCostsInner () {
pivotCount = 0;
for (int i = 0; i < pivots.Length; i++) {
if (pivots[i] != null && (pivots[i].Destroyed || !pivots[i].Walkable)) {
throw new System.Exception("Invalid pivot nodes (destroyed or unwalkable)");
}
}
if (mode != HeuristicOptimizationMode.RandomSpreadOut)
for (int i = 0; i < pivots.Length; i++)
if (pivots[i] == null)
throw new System.Exception("Invalid pivot nodes (null)");
pivotCount = pivots.Length;
System.Action<int> startCostCalculation = null;
int numComplete = 0;
var nodeCount = AstarPath.active.nodeStorage.nextNodeIndex;
if (costs.IsCreated) costs.Dispose();
// TODO: Quantize costs a bit to reduce memory usage?
costs = new NativeArray<uint>((int)nodeCount * pivotCount, Allocator.Persistent);
costs.AsUnsafeSpan().Fill(uint.MaxValue);
startCostCalculation = (int pivotIndex) => {
GraphNode pivot = pivots[pivotIndex];
var path = EuclideanEmbeddingSearchPath.Construct(
costs.AsUnsafeSpan(),
(uint)pivotCount,
(uint)pivotIndex,
pivot
);
path.immediateCallback = (Path _) => {
if (mode == HeuristicOptimizationMode.RandomSpreadOut && pivotIndex < pivots.Length-1) {
// If the next pivot is null
// then find the node which is furthest away from the earlier
// pivot points
if (pivots[pivotIndex+1] == null) {
pivots[pivotIndex+1] = path.furthestNode;
if (path.furthestNode == null) {
Debug.LogError("Failed generating random pivot points for heuristic optimizations");
return;
}
}
// Start next path
startCostCalculation(pivotIndex+1);
}
numComplete++;
if (numComplete == pivotCount) {
// Last completed path
ApplyGridGraphEndpointSpecialCase();
}
};
AstarPath.StartPath(path, true, true);
};
if (mode != HeuristicOptimizationMode.RandomSpreadOut) {
// All calculated in parallel
for (int i = 0; i < pivots.Length; i++) {
startCostCalculation(i);
}
} else if (pivots.Length > 0) {
// Recursive and serial
startCostCalculation(0);
}
dirty = false;
}
/// <summary>
/// Special case necessary for paths to unwalkable nodes right next to walkable nodes to be able to use good heuristics.
///
/// This will find all unwalkable nodes in all grid graphs with walkable nodes as neighbours
/// and set the cost to reach them from each of the pivots as the minimum of the cost to
/// reach the neighbours of each node.
///
/// See: ABPath.EndPointGridGraphSpecialCase
/// </summary>
void ApplyGridGraphEndpointSpecialCase () {
var costs = this.costs.AsUnsafeSpan();
#if !ASTAR_NO_GRID_GRAPH
var graphs = AstarPath.active.graphs;
for (int i = 0; i < graphs.Length; i++) {
if (graphs[i] is GridGraph gg) {
// Found a grid graph
var nodes = gg.nodes;
// Number of neighbours as an int
int mxnum = gg.neighbours == NumNeighbours.Four ? 4 : (gg.neighbours == NumNeighbours.Eight ? 8 : 6);
for (int z = 0; z < gg.depth; z++) {
for (int x = 0; x < gg.width; x++) {
var node = nodes[z*gg.width + x];
if (!node.Walkable) {
var pivotIndex = node.NodeIndex*(uint)pivotCount;
// Set all costs to reach this node to maximum
for (int piv = 0; piv < pivotCount; piv++) {
costs[pivotIndex + (uint)piv] = uint.MaxValue;
}
// Loop through all potential neighbours of the node
// and set the cost to reach it as the minimum
// of the costs to reach any of the adjacent nodes
for (int d = 0; d < mxnum; d++) {
int nx, nz;
if (gg.neighbours == NumNeighbours.Six) {
// Hexagon graph
nx = x + GridGraph.neighbourXOffsets[GridGraph.hexagonNeighbourIndices[d]];
nz = z + GridGraph.neighbourZOffsets[GridGraph.hexagonNeighbourIndices[d]];
} else {
nx = x + GridGraph.neighbourXOffsets[d];
nz = z + GridGraph.neighbourZOffsets[d];
}
// Check if the position is still inside the grid
if (nx >= 0 && nz >= 0 && nx < gg.width && nz < gg.depth) {
var adjacentNode = gg.nodes[nz*gg.width + nx];
if (adjacentNode.Walkable) {
for (uint piv = 0; piv < pivotCount; piv++) {
uint cost = costs[adjacentNode.NodeIndex*(uint)pivotCount + piv] + gg.neighbourCosts[d];
costs[pivotIndex + piv] = System.Math.Min(costs[pivotIndex + piv], cost);
//Debug.DrawLine((Vector3)node.position, (Vector3)adjacentNode.position, Color.blue, 1);
}
}
}
}
}
}
}
}
}
#endif
}
public void OnDrawGizmos () {
if (pivots != null) {
for (int i = 0; i < pivots.Length; i++) {
if (pivots[i] != null && !pivots[i].Destroyed) {
Draw.SolidBox((Vector3)pivots[i].position, Vector3.one, new Color(159/255.0f, 94/255.0f, 194/255.0f, 0.8f));
}
}
}
}
}
}