791 lines
30 KiB
C#

// #define DEBUG_JOBS
namespace Pathfinding.Jobs {
using System.Reflection;
using Unity.Collections;
using Unity.Jobs;
using System.Collections.Generic;
using Unity.Collections.LowLevel.Unsafe;
using Pathfinding.Pooling;
using Pathfinding.Collections;
using System.Runtime.InteropServices;
using System.Diagnostics;
/// <summary>
/// Disable the check that prevents jobs from including uninitialized native arrays open for reading.
///
/// Sometimes jobs have to include a readable native array that starts out uninitialized.
/// The job might for example write to it and later read from it in the same job.
///
/// See: <see cref="JobDependencyTracker.NewNativeArray"/>
/// </summary>
class DisableUninitializedReadCheckAttribute : System.Attribute {
}
public interface IArenaDisposable {
void DisposeWith(DisposeArena arena);
}
/// <summary>Convenient collection of items that can be disposed together</summary>
public class DisposeArena {
List<NativeArray<byte> > buffer;
List<NativeList<byte> > buffer2;
List<NativeQueue<byte> > buffer3;
List<GCHandle> gcHandles;
public void Add<T>(NativeArray<T> data) where T : unmanaged {
if (buffer == null) buffer = ListPool<NativeArray<byte> >.Claim();
buffer.Add(data.Reinterpret<byte>(UnsafeUtility.SizeOf<T>()));
}
public void Add<T>(NativeList<T> data) where T : unmanaged {
// SAFETY: This is safe because NativeList<byte> and NativeList<T> have the same memory layout.
var byteList = Unity.Collections.LowLevel.Unsafe.UnsafeUtility.As<NativeList<T>, NativeList<byte> >(ref data);
if (buffer2 == null) buffer2 = ListPool<NativeList<byte> >.Claim();
buffer2.Add(byteList);
}
public void Add<T>(NativeQueue<T> data) where T : unmanaged {
// SAFETY: This is safe because NativeQueue<byte> and NativeQueue<T> have the same memory layout.
var byteList = Unity.Collections.LowLevel.Unsafe.UnsafeUtility.As<NativeQueue<T>, NativeQueue<byte> >(ref data);
if (buffer3 == null) buffer3 = ListPool<NativeQueue<byte> >.Claim();
buffer3.Add(byteList);
}
public void Remove<T>(NativeArray<T> data) where T : unmanaged {
if (buffer == null) return;
unsafe {
var ptr = NativeArrayUnsafeUtility.GetUnsafeBufferPointerWithoutChecks(data);
for (int i = 0; i < buffer.Count; i++) {
if (NativeArrayUnsafeUtility.GetUnsafeBufferPointerWithoutChecks(buffer[i]) == ptr) {
buffer.RemoveAtSwapBack(i);
return;
}
}
}
}
public void Add<T>(T data) where T : IArenaDisposable {
data.DisposeWith(this);
}
public void Add (GCHandle handle) {
if (gcHandles == null) gcHandles = ListPool<GCHandle>.Claim();
gcHandles.Add(handle);
}
/// <summary>
/// Dispose all items in the arena.
/// This also clears the arena and makes it available for reuse.
/// </summary>
public void DisposeAll () {
UnityEngine.Profiling.Profiler.BeginSample("Disposing");
if (buffer != null) {
for (int i = 0; i < buffer.Count; i++) buffer[i].Dispose();
ListPool<NativeArray<byte> >.Release(ref buffer);
}
if (buffer2 != null) {
for (int i = 0; i < buffer2.Count; i++) buffer2[i].Dispose();
ListPool<NativeList<byte> >.Release(ref buffer2);
}
if (buffer3 != null) {
for (int i = 0; i < buffer3.Count; i++) buffer3[i].Dispose();
ListPool<NativeQueue<byte> >.Release(ref buffer3);
}
if (gcHandles != null) {
for (int i = 0; i < gcHandles.Count; i++) gcHandles[i].Free();
ListPool<GCHandle>.Release(ref gcHandles);
}
UnityEngine.Profiling.Profiler.EndSample();
}
}
// TODO: Remove or use?
public struct JobHandleWithMainThreadWork<T> where T : struct {
JobDependencyTracker tracker;
IEnumerator<(JobHandle, T)> coroutine;
public JobHandleWithMainThreadWork (IEnumerator<(JobHandle, T)> handles, JobDependencyTracker tracker) {
this.coroutine = handles;
this.tracker = tracker;
}
public void Complete () {
tracker.timeSlice = TimeSlice.Infinite;
while (coroutine.MoveNext()) {
coroutine.Current.Item1.Complete();
}
}
public System.Collections.Generic.IEnumerable<T?> CompleteTimeSliced (float maxMillisPerStep) {
tracker.timeSlice = TimeSlice.MillisFromNow(maxMillisPerStep);
while (true) {
if (!coroutine.MoveNext()) yield break;
if (maxMillisPerStep < float.PositiveInfinity) {
while (!coroutine.Current.Item1.IsCompleted) {
yield return null;
tracker.timeSlice = TimeSlice.MillisFromNow(maxMillisPerStep);
}
}
coroutine.Current.Item1.Complete();
yield return coroutine.Current.Item2;
tracker.timeSlice = TimeSlice.MillisFromNow(maxMillisPerStep);
}
}
}
enum LinearDependencies : byte {
Check,
Enabled,
Disabled,
}
/// <summary>
/// Automatic dependency tracking for the Unity Job System.
///
/// Uses reflection to find the [ReadOnly] and [WriteOnly] attributes on job data struct fields.
/// These are used to automatically figure out dependencies between jobs.
///
/// A job that reads from an array depends on the last job that wrote to that array.
/// A job that writes to an array depends on the last job that wrote to the array as well as all jobs that read from the array.
///
/// <code>
/// struct ExampleJob : IJob {
/// public NativeArray<int> someData;
///
/// public void Execute () {
/// // Do something
/// }
/// }
///
/// void Start () {
/// var tracker = new JobDependencyTracker();
/// var data = new NativeArray<int>(100, Allocator.TempJob);
/// var job1 = new ExampleJob {
/// someData = data
/// }.Schedule(tracker);
///
/// var job2 = new ExampleJob {
/// someData = data
/// }.Schedule(tracker);
///
/// // job2 automatically depends on job1 because they both require read/write access to the data array
/// }
/// </code>
///
/// See: <see cref="IJobExtensions"/>
/// </summary>
public class JobDependencyTracker : IAstarPooledObject {
internal List<NativeArraySlot> slots = ListPool<NativeArraySlot>.Claim();
DisposeArena arena;
internal NativeArray<JobHandle> dependenciesScratchBuffer;
LinearDependencies linearDependencies;
internal TimeSlice timeSlice = TimeSlice.Infinite;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
~JobDependencyTracker() {
if (dependenciesScratchBuffer.IsCreated) {
UnityEngine.Debug.LogError("JobDependencyTracker was not disposed. This will cause a memory leak. Please call Dispose on the JobDependencyTracker when you are done with it.");
}
}
#endif
public bool forceLinearDependencies {
get {
if (linearDependencies == LinearDependencies.Check) SetLinearDependencies(false);
return linearDependencies == LinearDependencies.Enabled;
}
}
internal struct JobInstance {
public JobHandle handle;
public int hash;
#if DEBUG_JOBS
public string name;
#endif
}
internal struct NativeArraySlot {
public long hash;
public JobInstance lastWrite;
public List<JobInstance> lastReads;
public bool initialized;
public bool hasWrite;
}
// Note: burst compiling even an empty job can avoid the overhead of going from unmanaged to managed code.
/* [BurstCompile]
struct JobDispose<T> : IJob where T : struct {
[DeallocateOnJobCompletion]
[DisableUninitializedReadCheck]
public NativeArray<T> data;
public void Execute () {
}
}*/
struct JobRaycastCommandDummy : IJob {
[ReadOnly]
public NativeArray<UnityEngine.RaycastCommand> commands;
[WriteOnly]
public NativeArray<UnityEngine.RaycastHit> results;
public void Execute () {}
}
#if UNITY_2022_2_OR_NEWER
struct JobOverlapCapsuleCommandDummy : IJob {
[ReadOnly]
public NativeArray<UnityEngine.OverlapCapsuleCommand> commands;
[WriteOnly]
public NativeArray<UnityEngine.ColliderHit> results;
public void Execute () {}
}
struct JobOverlapSphereCommandDummy : IJob {
[ReadOnly]
public NativeArray<UnityEngine.OverlapSphereCommand> commands;
[WriteOnly]
public NativeArray<UnityEngine.ColliderHit> results;
public void Execute () {}
}
#endif
/// <summary>
/// JobHandle that represents a dependency for all jobs.
/// All native arrays that are written (and have been tracked by this tracker) to will have their final results in them
/// when the returned job handle is complete.
/// </summary>
public JobHandle AllWritesDependency {
get {
var handles = new NativeArray<JobHandle>(slots.Count, Allocator.Temp);
for (int i = 0; i < slots.Count; i++) handles[i] = slots[i].lastWrite.handle;
var dependencies = JobHandle.CombineDependencies(handles);
handles.Dispose();
return dependencies;
}
}
bool supportsMultithreading {
get {
#if UNITY_WEBGL
return false;
#else
return Unity.Jobs.LowLevel.Unsafe.JobsUtility.JobWorkerCount > 0;
#endif
}
}
/// <summary>
/// Disable dependency tracking and just run jobs one after the other.
/// This may be faster in some cases since dependency tracking has some overhead.
/// </summary>
public void SetLinearDependencies (bool linearDependencies) {
if (!supportsMultithreading) linearDependencies = true;
if (linearDependencies) {
AllWritesDependency.Complete();
}
this.linearDependencies = linearDependencies ? LinearDependencies.Enabled : LinearDependencies.Disabled;
}
public NativeArray<T> NewNativeArray<T>(int length, Allocator allocator, NativeArrayOptions options = NativeArrayOptions.ClearMemory) where T : unmanaged {
var res = new NativeArray<T>(length, allocator, options);
Track(res, options == NativeArrayOptions.ClearMemory);
return res;
}
public void Track<T>(NativeArray<T> array, bool initialized = true) where T : unmanaged {
unsafe {
slots.Add(new NativeArraySlot {
hash = (long)NativeArrayUnsafeUtility.GetUnsafeBufferPointerWithoutChecks(array),
lastWrite = default,
lastReads = ListPool<JobInstance>.Claim(),
initialized = initialized,
});
}
if (this.arena == null) this.arena = new DisposeArena();
arena.Add(array);
}
/// <summary>
/// Makes the given array not be disposed when this tracker is disposed.
/// This is useful if you want to keep the array around after the tracker has been disposed.
/// The array will still be tracked for the purposes of automatic dependency management.
/// </summary>
public void Persist<T>(NativeArray<T> array) where T : unmanaged {
if (this.arena == null) return;
arena.Remove(array);
}
/// <summary>
/// Schedules a raycast batch command.
/// Like RaycastCommand.ScheduleBatch, but dependencies are tracked automatically.
/// </summary>
public JobHandle ScheduleBatch (NativeArray<UnityEngine.RaycastCommand> commands, NativeArray<UnityEngine.RaycastHit> results, int minCommandsPerJob) {
if (forceLinearDependencies) {
UnityEngine.RaycastCommand.ScheduleBatch(commands, results, minCommandsPerJob).Complete();
return default;
}
// Create a dummy structure to allow the analyzer to determine how the job reads/writes data
var dummy = new JobRaycastCommandDummy { commands = commands, results = results };
var dependencies = JobDependencyAnalyzer<JobRaycastCommandDummy>.GetDependencies(ref dummy, this);
var job = UnityEngine.RaycastCommand.ScheduleBatch(commands, results, minCommandsPerJob, dependencies);
JobDependencyAnalyzer<JobRaycastCommandDummy>.Scheduled(ref dummy, this, job);
return job;
}
#if UNITY_2022_2_OR_NEWER
/// <summary>
/// Schedules an overlap capsule batch command.
/// Like OverlapCapsuleCommand.ScheduleBatch, but dependencies are tracked automatically.
/// </summary>
public JobHandle ScheduleBatch (NativeArray<UnityEngine.OverlapCapsuleCommand> commands, NativeArray<UnityEngine.ColliderHit> results, int minCommandsPerJob) {
if (forceLinearDependencies) {
UnityEngine.OverlapCapsuleCommand.ScheduleBatch(commands, results, minCommandsPerJob, 1).Complete();
return default;
}
// Create a dummy structure to allow the analyzer to determine how the job reads/writes data
var dummy = new JobOverlapCapsuleCommandDummy { commands = commands, results = results };
var dependencies = JobDependencyAnalyzer<JobOverlapCapsuleCommandDummy>.GetDependencies(ref dummy, this);
var job = UnityEngine.OverlapCapsuleCommand.ScheduleBatch(commands, results, minCommandsPerJob, 1, dependencies);
JobDependencyAnalyzer<JobOverlapCapsuleCommandDummy>.Scheduled(ref dummy, this, job);
return job;
}
/// <summary>
/// Schedules an overlap sphere batch command.
/// Like OverlapSphereCommand.ScheduleBatch, but dependencies are tracked automatically.
/// </summary>
public JobHandle ScheduleBatch (NativeArray<UnityEngine.OverlapSphereCommand> commands, NativeArray<UnityEngine.ColliderHit> results, int minCommandsPerJob) {
if (forceLinearDependencies) {
UnityEngine.OverlapSphereCommand.ScheduleBatch(commands, results, minCommandsPerJob, 1).Complete();
return default;
}
// Create a dummy structure to allow the analyzer to determine how the job reads/writes data
var dummy = new JobOverlapSphereCommandDummy { commands = commands, results = results };
var dependencies = JobDependencyAnalyzer<JobOverlapSphereCommandDummy>.GetDependencies(ref dummy, this);
var job = UnityEngine.OverlapSphereCommand.ScheduleBatch(commands, results, minCommandsPerJob, 1, dependencies);
JobDependencyAnalyzer<JobOverlapSphereCommandDummy>.Scheduled(ref dummy, this, job);
return job;
}
#endif
/// <summary>Frees the GCHandle when the JobDependencyTracker is disposed</summary>
public void DeferFree (GCHandle handle, JobHandle dependsOn) {
if (this.arena == null) this.arena = new DisposeArena();
this.arena.Add(handle);
}
#if DEBUG_JOBS
internal void JobReadsFrom (JobHandle job, long nativeArrayHash, int jobHash, string jobName)
#else
internal void JobReadsFrom (JobHandle job, long nativeArrayHash, int jobHash)
#endif
{
for (int j = 0; j < slots.Count; j++) {
var slot = slots[j];
if (slot.hash == nativeArrayHash) {
// If the job only reads from the array then we just add this job to the list of readers
slot.lastReads.Add(new JobInstance {
handle = job,
hash = jobHash,
#if DEBUG_JOBS
name = jobName,
#endif
});
break;
}
}
}
#if DEBUG_JOBS
internal void JobWritesTo (JobHandle job, long nativeArrayHash, int jobHash, string jobName)
#else
internal void JobWritesTo (JobHandle job, long nativeArrayHash, int jobHash)
#endif
{
for (int j = 0; j < slots.Count; j++) {
var slot = slots[j];
if (slot.hash == nativeArrayHash) {
// If the job writes to the array then this job is now the last writer
slot.lastWrite = new JobInstance {
handle = job,
hash = jobHash,
#if DEBUG_JOBS
name = jobName,
#endif
};
slot.lastReads.Clear();
// The array no longer contains uninitialized data.
// Parts of it may still be uninitialized if the job doesn't write to everything, but that's something that this class cannot track.
slot.initialized = true;
slot.hasWrite = true;
slots[j] = slot;
break;
}
}
}
/// <summary>
/// Disposes this tracker.
/// This will pool all used lists which makes the GC happy.
///
/// Note: It is necessary to call this method to avoid memory leaks if you are using the DeferDispose method. But it's a good thing to do otherwise as well.
/// It is automatically called if you are using the ObjectPool<T>.Release method.
/// </summary>
void Dispose () {
#if ENABLE_UNITY_COLLECTIONS_CHECKS && UNITY_2022_2_OR_NEWER
// Note: This can somehow fail in Unity 2021 and 2022.1, even when calling Complete on all jobs
UnityEngine.Assertions.Assert.IsTrue(AllWritesDependency.IsCompleted);
#endif
for (int i = 0; i < slots.Count; i++) ListPool<JobInstance>.Release(slots[i].lastReads);
slots.Clear();
if (arena != null) arena.DisposeAll();
linearDependencies = LinearDependencies.Check;
if (dependenciesScratchBuffer.IsCreated) dependenciesScratchBuffer.Dispose();
}
public void ClearMemory () {
AllWritesDependency.Complete();
Dispose();
}
void IAstarPooledObject.OnEnterPool () {
Dispose();
}
}
public struct TimeSlice {
public long endTick;
public static readonly TimeSlice Infinite = new TimeSlice { endTick = long.MaxValue };
public bool isInfinite => endTick == long.MaxValue;
public bool expired => Stopwatch.GetTimestamp() > endTick;
public static TimeSlice MillisFromNow (float millis) => new TimeSlice { endTick = Stopwatch.GetTimestamp() + (long)(millis * 10000) };
}
public interface IJobTimeSliced : IJob {
/// <summary>
/// Returns true if the job completed.
/// If false is returned this job may be called again until the job completes.
/// </summary>
bool Execute(TimeSlice timeSlice);
}
/// <summary>Extension methods for IJob and related interfaces</summary>
public static class IJobExtensions {
struct ManagedJob : IJob {
public GCHandle handle;
public void Execute () {
((IJob)handle.Target).Execute();
handle.Free();
}
}
struct ManagedActionJob : IJob {
public GCHandle handle;
public void Execute () {
((System.Action)handle.Target)();
handle.Free();
}
}
/// <summary>
/// Schedule a job with automatic dependency tracking.
/// You need to have "using Pathfinding.Util" in your script to be able to use this extension method.
///
/// See: <see cref="JobDependencyTracker"/>
/// </summary>
// TODO: Compare performance impact by using ref this, and ScheduleByRef
public static JobHandle Schedule<T>(this T data, JobDependencyTracker tracker) where T : struct, IJob {
if (tracker.forceLinearDependencies) {
data.Run();
return default;
} else {
var job = data.Schedule(JobDependencyAnalyzer<T>.GetDependencies(ref data, tracker));
JobDependencyAnalyzer<T>.Scheduled(ref data, tracker, job);
return job;
}
}
/// <summary>Schedules an <see cref="IJobParallelForBatched"/> job with automatic dependency tracking</summary>
public static JobHandle ScheduleBatch<T>(this T data, int arrayLength, int minIndicesPerJobCount, JobDependencyTracker tracker, JobHandle additionalDependency = default) where T : struct, IJobParallelForBatched {
if (tracker.forceLinearDependencies) {
additionalDependency.Complete();
//data.ScheduleBatch(arrayLength, minIndicesPerJobCount, additionalDependency).Complete();
data.RunBatch(arrayLength);
return default;
} else {
var job = data.ScheduleBatch(arrayLength, minIndicesPerJobCount, JobDependencyAnalyzer<T>.GetDependencies(ref data, tracker, additionalDependency));
JobDependencyAnalyzer<T>.Scheduled(ref data, tracker, job);
return job;
}
}
/// <summary>Schedules a managed job to run in the job system</summary>
public static JobHandle ScheduleManaged<T>(this T data, JobHandle dependsOn) where T : struct, IJob {
return new ManagedJob { handle = GCHandle.Alloc(data) }.Schedule(dependsOn);
}
/// <summary>Schedules a managed job to run in the job system</summary>
public static JobHandle ScheduleManaged (this System.Action data, JobHandle dependsOn) {
return new ManagedActionJob {
handle = GCHandle.Alloc(data)
}.Schedule(dependsOn);
}
public static JobHandle GetDependencies<T>(this T data, JobDependencyTracker tracker) where T : struct, IJob {
if (tracker.forceLinearDependencies) return default;
else return JobDependencyAnalyzer<T>.GetDependencies(ref data, tracker);
}
/// <summary>
/// Executes this job in the main thread using a coroutine.
/// Usage:
/// - 1. Optionally schedule some other jobs before this one (using the dependency tracker)
/// - 2. Call job.ExecuteMainThreadJob(tracker)
/// - 3. Iterate over the enumerator until it is finished. Call handle.Complete on all yielded job handles. Usually this only yields once, but if you use the <see cref="JobHandleWithMainThreadWork"/> wrapper it will
/// yield once for every time slice.
/// - 4. Continue scheduling other jobs.
///
/// You must not schedule other jobs (that may touch the same data) while executing this job.
///
/// See: <see cref="JobHandleWithMainThreadWork"/>
/// </summary>
public static IEnumerator<JobHandle> ExecuteMainThreadJob<T>(this T data, JobDependencyTracker tracker) where T : struct, IJobTimeSliced {
if (tracker.forceLinearDependencies) {
UnityEngine.Profiling.Profiler.BeginSample("Main Thread Work");
data.Execute();
UnityEngine.Profiling.Profiler.EndSample();
yield break;
}
var dependsOn = JobDependencyAnalyzer<T>.GetDependencies(ref data, tracker);
yield return dependsOn;
while (true) {
UnityEngine.Profiling.Profiler.BeginSample("Main Thread Work");
var didComplete = data.Execute(tracker.timeSlice);
UnityEngine.Profiling.Profiler.EndSample();
if (didComplete) yield break;
else yield return new JobHandle();
}
}
}
static class JobDependencyAnalyzerAssociated {
internal static int[] tempJobDependencyHashes = new int[16];
internal static int jobCounter = 1;
}
struct JobDependencyAnalyzer<T> where T : struct {
static ReflectionData reflectionData;
/// <summary>Offset to the m_Buffer field inside each NativeArray<T></summary>
// Note: Due to a Unity bug we have to calculate this for NativeArray<int> instead of NativeArray<>. NativeArray<> will return an incorrect value (-16) when using IL2CPP.
static readonly int BufferOffset = UnsafeUtility.GetFieldOffset(typeof(NativeArray<int>).GetField("m_Buffer", BindingFlags.Instance | BindingFlags.NonPublic));
static readonly int SpanPtrOffset = UnsafeUtility.GetFieldOffset(typeof(UnsafeSpan<int>).GetField("ptr", BindingFlags.Instance | BindingFlags.NonPublic));
struct ReflectionData {
public int[] fieldOffsets;
public bool[] writes;
public bool[] checkUninitializedRead;
public string[] fieldNames;
public void Build () {
// Find the byte offsets within the struct to all m_Buffer fields in all the native arrays in the struct
var fields = new List<int>();
var writes = new List<bool>();
var reads = new List<bool>();
var names = new List<string>();
Build(typeof(T), fields, writes, reads, names, 0, false, false, false);
this.fieldOffsets = fields.ToArray();
this.writes = writes.ToArray();
this.fieldNames = names.ToArray();
this.checkUninitializedRead = reads.ToArray();
}
void Build (System.Type type, List<int> fields, List<bool> writes, List<bool> reads, List<string> names, int offset, bool forceReadOnly, bool forceWriteOnly, bool forceDisableUninitializedCheck) {
foreach (var field in type.GetFields(BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic)) {
if (field.FieldType.IsGenericType && field.FieldType.GetGenericTypeDefinition() == typeof(NativeArray<>)) {
// Handle NativeArrays
fields.Add(offset + UnsafeUtility.GetFieldOffset(field) + BufferOffset);
writes.Add(!forceReadOnly && field.GetCustomAttribute(typeof(ReadOnlyAttribute)) == null);
reads.Add(!forceWriteOnly && !forceDisableUninitializedCheck && field.GetCustomAttribute(typeof(WriteOnlyAttribute)) == null && field.GetCustomAttribute(typeof(DisableUninitializedReadCheckAttribute)) == null);
names.Add(field.Name);
} else if (field.FieldType.IsGenericType && field.FieldType.GetGenericTypeDefinition() == typeof(UnsafeSpan<>)) {
// Handle UnsafeSpans
fields.Add(offset + UnsafeUtility.GetFieldOffset(field) + SpanPtrOffset);
writes.Add(!forceReadOnly && field.GetCustomAttribute(typeof(ReadOnlyAttribute)) == null);
reads.Add(!forceWriteOnly && !forceDisableUninitializedCheck && field.GetCustomAttribute(typeof(WriteOnlyAttribute)) == null && field.GetCustomAttribute(typeof(DisableUninitializedReadCheckAttribute)) == null);
names.Add(field.Name);
} else if (!field.FieldType.IsPrimitive && field.FieldType.IsValueType && !field.FieldType.IsEnum) {
// Recurse to handle nested types
bool readOnly = field.GetCustomAttribute(typeof(ReadOnlyAttribute)) != null;
bool writeOnly = field.GetCustomAttribute(typeof(WriteOnlyAttribute)) != null;
bool disableUninitializedCheck = field.GetCustomAttribute(typeof(DisableUninitializedReadCheckAttribute)) != null;
Build(field.FieldType, fields, writes, reads, names, offset + UnsafeUtility.GetFieldOffset(field), readOnly, writeOnly, disableUninitializedCheck);
}
}
}
}
static void initReflectionData () {
if (reflectionData.fieldOffsets == null) {
reflectionData.Build();
}
}
static bool HasHash (int[] hashes, int hash, int count) {
for (int i = 0; i < count; i++) if (hashes[i] == hash) return true;
return false;
}
/// <summary>Returns the dependencies for the given job.</summary>
/// <param name="data">Job data. Must be allocated on the stack.</param>
/// <param name="tracker">The tracker to use for dependency tracking.</param>
public static JobHandle GetDependencies (ref T data, JobDependencyTracker tracker) {
return GetDependencies(ref data, tracker, default, false);
}
public static JobHandle GetDependencies (ref T data, JobDependencyTracker tracker, JobHandle additionalDependency) {
return GetDependencies(ref data, tracker, additionalDependency, true);
}
static JobHandle GetDependencies (ref T data, JobDependencyTracker tracker, JobHandle additionalDependency, bool useAdditionalDependency) {
if (!tracker.dependenciesScratchBuffer.IsCreated) tracker.dependenciesScratchBuffer = new NativeArray<JobHandle>(16, Allocator.Persistent, NativeArrayOptions.UninitializedMemory);
var dependencies = tracker.dependenciesScratchBuffer;
var slots = tracker.slots;
var dependencyHashes = JobDependencyAnalyzerAssociated.tempJobDependencyHashes;
int numDependencies = 0;
initReflectionData();
#if DEBUG_JOBS
string dependenciesDebug = "";
#endif
unsafe {
// Note: data is a struct. It is stored on the stack and can thus not be moved by the GC.
// Therefore we do not need to pin it first.
// It is guaranteed to be stored on the stack since the Schedule method takes the data parameter by value and not by reference.
byte* dataPtr = (byte*)UnsafeUtility.AddressOf(ref data);
var offsets = reflectionData.fieldOffsets;
for (int i = 0; i < offsets.Length; i++) {
// This is the internal value of the m_Buffer field of the NativeArray
void* nativeArrayBufferPtr = *(void**)(dataPtr + offsets[i]);
// Use the pointer as a hash to uniquely identify a NativeArray
var hash = (long)nativeArrayBufferPtr;
//JobDependencyAnalyzerAssociated.iteratingSlotsSampler.Begin();
for (int j = 0; j <= slots.Count; j++) {
// No slot found. Add a new one
if (j == slots.Count) {
slots.Add(new JobDependencyTracker.NativeArraySlot {
hash = hash,
lastWrite = default,
lastReads = ListPool<JobDependencyTracker.JobInstance>.Claim(),
initialized = true, // We don't know anything about the array, so assume it contains initialized data. JobDependencyTracker.NewNativeArray should be used otherwise.
hasWrite = false,
});
}
// Check if we know about this NativeArray yet
var slot = slots[j];
if (slot.hash == hash) {
if (reflectionData.checkUninitializedRead[i] && !slot.initialized) {
throw new System.InvalidOperationException("A job tries to read from the native array " + typeof(T).Name + "." + reflectionData.fieldNames[i] + " which contains uninitialized data");
}
if (slot.hasWrite && !HasHash(dependencyHashes, slot.lastWrite.hash, numDependencies)) {
// Reads/writes always depend on the last write to the native array
dependencies[numDependencies] = slot.lastWrite.handle;
dependencyHashes[numDependencies] = slot.lastWrite.hash;
numDependencies++;
if (numDependencies >= dependencies.Length) throw new System.Exception("Too many dependencies for job");
#if DEBUG_JOBS
dependenciesDebug += slot.lastWrite.name + " ";
#endif
}
// If we want to write to the array we additionally depend on all previous reads of the array
if (reflectionData.writes[i]) {
for (int q = 0; q < slot.lastReads.Count; q++) {
if (!HasHash(dependencyHashes, slot.lastReads[q].hash, numDependencies)) {
dependencies[numDependencies] = slot.lastReads[q].handle;
dependencyHashes[numDependencies] = slot.lastReads[q].hash;
numDependencies++;
if (numDependencies >= dependencies.Length) throw new System.Exception("Too many dependencies for job");
#if DEBUG_JOBS
dependenciesDebug += slot.lastReads[q].name + " ";
#endif
}
}
}
break;
}
}
}
if (useAdditionalDependency) {
dependencies[numDependencies] = additionalDependency;
numDependencies++;
#if DEBUG_JOBS
dependenciesDebug += "[additional dependency]";
#endif
}
#if DEBUG_JOBS
UnityEngine.Debug.Log(typeof(T) + " depends on " + dependenciesDebug);
#endif
if (numDependencies == 0) {
return default;
} else if (numDependencies == 1) {
return dependencies[0];
} else {
return JobHandle.CombineDependencies(dependencies.Slice(0, numDependencies));
}
}
}
internal static void Scheduled (ref T data, JobDependencyTracker tracker, JobHandle job) {
unsafe {
int jobHash = JobDependencyAnalyzerAssociated.jobCounter++;
// Note: data is a struct. It is stored on the stack and can thus not be moved by the GC.
// Therefore we do not need to pin it first.
// It is guaranteed to be stored on the stack since the Schedule method takes the data parameter by value and not by reference.
byte* dataPtr = (byte*)UnsafeUtility.AddressOf(ref data);
for (int i = 0; i < reflectionData.fieldOffsets.Length; i++) {
// This is the internal value of the m_Buffer field of the NativeArray
void* nativeArrayBufferPtr = *(void**)(dataPtr + reflectionData.fieldOffsets[i]);
// Use the pointer as a hash to uniquely identify a NativeArray
var hash = (long)nativeArrayBufferPtr;
#if DEBUG_JOBS
if (reflectionData.writes[i]) tracker.JobWritesTo(job, hash, jobHash, typeof(T).Name);
else tracker.JobReadsFrom(job, hash, jobHash, typeof(T).Name);
#else
if (reflectionData.writes[i]) tracker.JobWritesTo(job, hash, jobHash);
else tracker.JobReadsFrom(job, hash, jobHash);
#endif
}
}
}
}
}