
Get	Started	Guide
This	is	an	excerpt	from	the	full	documentation.	You	can	view	the	full	documentation	here
(https://arongranberg.com/astar/documentation/stable).	Most	links	on	this	page	will	just	take	you	to	the	full	documentation.

Get	Started	with	the	A*	Pathfinding	Project.
Pathfinding	is	all	about	finding	the	best	path	between	point	A	and	B.	This	is	what	the	A*	Pathfinding	Project	does.	In	this	tutorial,
you	will	learn	how	to	set	up	the	project	in	a	new	scene	and	get	a	simple	AI	moving	while	avoiding	obstacles.
The	AI	you	will	write	will	not	be	very	advanced;	it	is	just	the	minimal	amount	of	code	needed	to	get	moving	and	follow	a	path.	If
you	want	a	more	advanced	AI,	you	can	either	extend	the	script	you	will	write	in	this	tutorial	or	use	(or	extend)	the	AIPath	or
RichAI	(https://arongranberg.com/astar/documentation/stable/richai.html)	scripts	included	in	the	package	(see	part	2	for	basic
usage	of	the	RichAI	component).

Installation
The	first	thing	you	need	to	do,	if	you	haven't	done	so	already,	is	to	download	the	A*	Pathfinding	Project.
Please	read	the	installation	guide	here:	Installation	Guide
(https://arongranberg.com/astar/documentation/stable/installation.html).
The	project	can	be	downloaded	from	here	(https://www.arongranberg.com/astar/download).	You	can	either	download	the	free
version	with	some	limited	features	(but	still	very	powerful)	or	buy	the	pro	version	which	has	more	cool	features	included.
If	you	want,	you	can	explore	the	different	example	scenes	in	the	project	before	you	start	with	the	next	section.	Depending	on
how	you	installed	the	package,	you	may	need	to	import	these	separately	in	the	Unity	Package	Manager.

See
Example	Scenes	(https://arongranberg.com/astar/documentation/stable/examplescenes.html)

Overview
There	are	several	different	parts	of	the	package.	Broadly,	they	can	be	grouped	into:

Movement	scripts,	which	tell	the	agent	how	to	move	and	where	it	should	move	(see	Movement	scripts
(https://arongranberg.com/astar/documentation/stable/movementscripts.html)).
Graphs,	which	describe	where	an	agent	can	move	(see	Graph	Types
(https://arongranberg.com/astar/documentation/stable/graphtypes.html)).
Temporary	obstacles,	which	cut	holes	in	the	navmesh	or	update	it	in	other	ways	(see	Graph	Updates	during	Runtime
(https://arongranberg.com/astar/documentation/stable/graphupdates.html)).
Off-mesh	links,	which	allow	an	agent	to	move	or	jump	between	otherwise	disconnected	parts	of	the	navmesh	(see
NodeLink2	(https://arongranberg.com/astar/documentation/stable/nodelink2.html)).
Path	modifiers,	which	post-process	paths	to,	for	example,	smooth	them	(see	Using	Modifiers
(https://arongranberg.com/astar/documentation/stable/modifiers2.html)).

What	you	will	primarily	interact	with	is	the	movement	script	and	the	Seeker
(https://arongranberg.com/astar/documentation/stable/seeker.html)	component.	Both	need	to	be	attached	to	an	agent	that
needs	to	move.	The	movement	script	controls	how	the	agent	should	move,	its	velocity,	rotation,	and	so	on,	as	well	as	what	the
current	destination	of	the	agent	is	and	when	it	should	recalculate	its	path.	The	Seeker
(https://arongranberg.com/astar/documentation/stable/seeker.html)	component	is	controlled	by	the	movement	script.	The
movement	script	tells	it	to	calculate	a	path,	and	the	Seeker	will	process	this	and	later	(possibly	in	a	later	frame)	return	the
result	to	the	movement	script.
The	AstarPath	(https://arongranberg.com/astar/documentation/stable/astarpath.html)	component	holds	all	the	graph	data	in	a
scene.	It	follows	the	singleton	pattern	(https://en.wikipedia.org/wiki/Singleton_pattern),	so	there	should	only	be	one	such
component	in	a	scene.	It	may	contain	one	or	many	graphs,	of	the	same	or	different	types.	Each	graph,	in	turn,	contains	and
manages	all	its	nodes	(of	which	there	may	be	many,	sometimes	up	to	millions).
There	are	a	number	of	included	movement	scripts	in	the	package	(e.g	AIPath
(https://arongranberg.com/astar/documentation/stable/aipath.html),	RichAI
(https://arongranberg.com/astar/documentation/stable/richai.html),	AILerp
(https://arongranberg.com/astar/documentation/stable/ailerp.html),	FollowerEntity
(https://arongranberg.com/astar/documentation/stable/followerentity.html)).	You	may	use	one	of	the	included	ones,	or	you	can
write	your	own	(see	Writing	a	movement	script
(https://arongranberg.com/astar/documentation/stable/custom_movement_script.html)).	You	can	find	a	comparison	of	the	built-
in	movement	scripts	here:	Movement	scripts	(https://arongranberg.com/astar/documentation/stable/movementscripts.html).

Video	Tutorial

https://arongranberg.com/astar/documentation/stable
https://arongranberg.com/astar/documentation/stable/richai.html
https://arongranberg.com/astar/documentation/stable/installation.html
https://www.arongranberg.com/astar/download
https://arongranberg.com/astar/documentation/stable/examplescenes.html
https://arongranberg.com/astar/documentation/stable/movementscripts.html
https://arongranberg.com/astar/documentation/stable/graphtypes.html
https://arongranberg.com/astar/documentation/stable/graphupdates.html
https://arongranberg.com/astar/documentation/stable/nodelink2.html
https://arongranberg.com/astar/documentation/stable/modifiers2.html
https://arongranberg.com/astar/documentation/stable/seeker.html
https://arongranberg.com/astar/documentation/stable/seeker.html
https://arongranberg.com/astar/documentation/stable/astarpath.html
https://en.wikipedia.org/wiki/Singleton_pattern
https://arongranberg.com/astar/documentation/stable/aipath.html
https://arongranberg.com/astar/documentation/stable/richai.html
https://arongranberg.com/astar/documentation/stable/ailerp.html
https://arongranberg.com/astar/documentation/stable/followerentity.html
https://arongranberg.com/astar/documentation/stable/custom_movement_script.html
https://arongranberg.com/astar/documentation/stable/movementscripts.html


If	you	prefer	a	video	tutorial	instead	of	a	text	tutorial,	here	is	a	video	for	you.	The	video	tutorial	takes	a	more	high-level
approach,	and	you	will	learn	how	to	use	the	built-in	movement	scripts	instead	of	writing	a	custom	one.	Since	the	video	and	text
tutorials	cover	slightly	different	ground,	it	is	not	a	bad	idea	to	take	a	look	at	both.

You	can	also	take	a	look	at	the	excellent	tutorial	by	Gabriel	Williams	(Unity	Cookie)	in	part	8	of	the	series	on	making	a	Tower
Defence	game:	https://www.youtube.com/watch?feature=player_embedded&v=PUJSvd53v4k	(https://www.youtube.com/watch?
feature=player_embedded&v=PUJSvd53v4k)	The	video	covers	most	things	which	will	be	discussed	in	the	text	tutorial.

New	Scene
Create	a	new	scene,	name	it	"PathfindingTest".	Now	let's	create	something	which	an	AI	could	walk	on	and	something	for	it	to
avoid:	add	a	plane	to	the	scene,	place	it	in	the	scene	origin	(0,0,0)	and	scale	it	to	10,10,10.
Create	a	new	layer	(Edit	→	Project	Settings	→	Tags)	named	"Ground"	and	place	the	plane	in	that	layer.	Now	create	some	cubes
of	different	scales	and	place	them	on	the	plane;	these	will	be	obstacles	which	the	AI	should	avoid.	Place	them	in	a	new	layer
named	"Obstacles".
Your	scene	should	now	look	something	like	this:

Adding	A*
Now	we	have	ground	for	an	AI	to	stand	on	and	obstacles	for	it	to	avoid.	So	now	we	are	going	to	add	the	A*	Pathfinding	System
to	the	scene	to	enable	Pathfinding.
Create	a	new	GameObject,	name	it	"A*",	then	add	the	"AstarPath"	component	to	it	(Menu	bar	→	Components	→	Pathfinding	→
AstarPath	(https://arongranberg.com/astar/documentation/stable/astarpath.html)).
The	AstarPath	(https://arongranberg.com/astar/documentation/stable/astarpath.html)	inspector	is	divided	into	several	parts.
The	two	most	important	are	the	Graphs	area	and	the	Scan	button	at	the	bottom.	The	Graphs	area	holds	all	the	graphs	in	your
scene;	you	may	have	up	to	256,	but	usually	1	or	2	will	be	sufficient.	A	single	graph	is	usually	preferred	for	simplicity.

https://www.youtube.com/watch?v=5QT5Czfe0YE
https://www.youtube.com/watch?feature=player_embedded&v=PUJSvd53v4k
https://arongranberg.com/astar/documentation/stable/astarpath.html
https://arongranberg.com/astar/documentation/stable/astarpath.html


If	you	open	the	Graphs	area	by	clicking	on	it,	you	will	see	a	list	of	graphs	which	you	can	add.	For	this	tutorial,	we	will	create	a
GridGraph	(https://arongranberg.com/astar/documentation/stable/gridgraph.html),	which	generates	nodes	in	a	grid	pattern.

See
You	can	read	more	about	the	different	graph	types	in	Graph	Types
(https://arongranberg.com/astar/documentation/stable/graphtypes.html).

After	you	have	added	the	grid	graph,	click	its	label	to	bring	up	the	graph	settings.
At	the	bottom	of	the	inspector,	you	will	find	a	button	called	"Scan".	This	is	used	to	calculate	the	graph	based	on	its	settings	and
the	world.	After	you	change	any	settings,	you	will	have	to	scan	the	graph	to	see	the	changes.	There	is	a	handy	shortcut
(https://arongranberg.com/astar/documentation/stable/shortcuts.html)	for	this:	Cmd+Alt+S	(mac)	or	Ctrl+Alt+S	(windows).
All	graphs	are	scanned	by	default	when	the	game	starts	(unless	the	startup	is	cached,	more	about	that	in	another	part
(https://arongranberg.com/astar/documentation/stable/saveloadgraphs.html)).

As	the	name	implies,	the	GridGraph	will	generate	a	grid	of	nodes	with	the	size	width*depth.	A	grid	can	be	positioned	anywhere
in	the	scene,	and	you	can	rotate	it	any	way	you	want.
The	Node	Size	variable	determines	how	large	a	square/node	in	the	grid	is;	for	this	tutorial	you	can	leave	it	at	1,	so	the	nodes
will	be	spaced	1	unit	apart.
The	position	needs	to	be	changed,	though.	Switch	to	bottom-left	in	the	small	selector	to	the	right	of	the	position	field	(currently
named	"Center"),	then	enter	(-50,-0.1,-50).	The	-0.1	is	to	avoid	floating	point	errors;	in	our	scene	the	ground	is	at	Y=0,	if	the
graph	was	to	have	position	Y=0	too,	we	might	get	annoying	floating	point	errors	when	casting	rays	against	it	for	example	(like
the	height	check	does).
To	make	the	grid	fit	our	scene,	we	need	to	change	the	width	and	depth	variables;	set	both	to	100	in	this	case.	You	can	see	that
the	grid	is	correctly	positioned	by	the	white	bounding	rectangle	in	the	scene	view,	which	should	now	be	enclosing	the	plane
exactly.

Height	Testing

https://arongranberg.com/astar/documentation/stable/gridgraph.html
https://arongranberg.com/astar/documentation/stable/graphtypes.html
https://arongranberg.com/astar/documentation/stable/shortcuts.html
https://arongranberg.com/astar/documentation/stable/saveloadgraphs.html


In	order	to	place	the	nodes	at	their	correct	height,	the	A*	system	fires	off	a	bunch	of	rays	against	the	scene	to	see	where	they
hit.	That's	the	Height	Testing	settings.	A	ray	is	fired	from	[Ray	Length]	units	above	the	grid	downwards,	a	node	is	placed	where
it	hits.	If	it	doesn't	hit	anything,	it	is	either	made	unwalkable	if	the	Unwalkable	When	No	Ground	variable	is	toggled	or	the	node
is	placed	at	Y=0	relative	to	the	grid	if	it	is	set	to	false.
To	make	sure	our	height	testing	hits	the	correct	things,	we	need	to	change	the	mask	used.	Currently	it	includes	everything,	but
that	would	include	our	obstacles	as	well,	and	we	don't	want	that.	So	set	the	Mask	to	only	include	the	"Ground"	layer	which	we
created	earlier.

Collision	Testing
When	a	node	has	been	placed,	it	is	checked	for	walkability;	this	can	be	done	with	a	Sphere,	Capsule	or	a	Ray.	Usually	a	capsule
is	used	with	the	same	diameter	and	height	as	the	AI	character	which	is	going	to	be	walking	around	in	the	world,	preferably	with
some	margin	though.
Our	AI	will	have	the	standard	diameter	and	height	of	1	and	2	world	units	respectively,	but	we	will	set	the	diameter	and	height
for	the	collision	testing	to	2	and	2	to	get	some	margin.
Next,	to	make	the	system	aware	of	the	obstacles	we	placed,	we	need	to	change	the	mask	for	the	Collision	Testing;	this	time	set
it	to	contain	only	the	"Obstacles"	layer	as	we	wouldn't	want	our	ground	to	be	treated	as	an	obstacle.
Now	that	everything	is	set	up	correctly	you	can	press	the	Scan	button.	Wait	a	fraction	of	a	second	and	you've	got	a	generated
grid!	(if	you	have	done	everything	correctly,	that	is.	Compare	your	settings	to	the	image	below	and	make	sure	that	Show
Graphs	is	true).

Adding	the	AI
What	is	a	pathfinding	test	without	some	moving	stuff?	Not	fun	at	all,	so	let's	add	an	AI	to	play	around	with.
Create	a	capsule	and	add	the	Character	Controller	component	to	it,	also	place	it	somewhere	visible	on	the	plane.



Add	the	Seeker	component	to	the	AI;	this	script	is	a	helper	script	for	calling	requesting	paths	from	other	scripts,	it	can	also
handle	path	modifiers	which	can	e.g.	smooth	the	path	or	simplify	it	using	raycasts.
There	are	two	alternatives	now.	You	can	either	write	your	own	movement	script	or	you	can	use	one	of	the	built-in	movement
scripts.	The	included	scripts	are	much	more	advanced	than	what	you	write	in	the	tutorial	linked	below,	so	for	most	cases	I
recommend	using	them.	However,	I	still	recommend	following	the	tutorial	for	writing	a	custom	movement	script	even	if	you	end
up	using	one	of	the	built-in	ones	in	your	game	because	it	makes	it	easier	to	understand	how	the	system	works	under	the	hood.
Check	out	this	subpage	for	the	tutorial:	Writing	a	movement	script
(https://arongranberg.com/astar/documentation/stable/custom_movement_script.html)
The	included	scripts	are	called	AIPath	(https://arongranberg.com/astar/documentation/stable/aipath.html),	RichAI
(https://arongranberg.com/astar/documentation/stable/richai.html)	and	AILerp
(https://arongranberg.com/astar/documentation/stable/ailerp.html).	The	AIPath	and	AILerp	scripts	can	be	used	on	any	graph,
while	RichAI	is	primarily	for	navmesh	based	graphs.	While	the	AIPath	and	RichAI	scripts	follow	the	path	loosely,	the	AILerp	script
uses	interpolation	to	move	along	the	path	very	precisely,	but	perhaps	not	in	the	most	realistic	way.	Which	one	you	use	depends
on	your	game.

See
For	more	information	about	the	included	movement	scripts,	take	a	look	at	Movement	scripts
(https://arongranberg.com/astar/documentation/stable/movementscripts.html).	You	can	also	see	how	they	are	used	in	the
included	example	scenes.

For	this	tutorial,	you	can	attach	the	AIPath	(https://arongranberg.com/astar/documentation/stable/aipath.html)	component	to
the	AI.	Also	create	a	new	GameObject	named	"Target"	and	position	it	where	you	want	the	AI	to	move.	Then	attach	the
AIDestinationSetter	(https://arongranberg.com/astar/documentation/stable/aidestinationsetter.html)	component	to	the	AI.	This
component	is	just	a	very	simple	helper	script	which	will	tell	the	AIPath	script	to	move	to	a	particular	location.	You	will	likely
replace	this	script	with	your	own	game-specific	script	in	the	future.	The	AIDestinationSetter	component	has	a	single	field	called
"target",	assign	the	"Target"	GameObject	that	you	created	earlier	to	this	field.
If	you	press	play	now,	the	AI	should	move	to	the	target.	How	the	movement	scripts	work	and	how	to	configure	them	is
explained	in	more	detail	in	the	video	tutorial	linked	above.	Take	a	look	at	that	if	something	doesn't	seem	to	work.

Smoothing
Now	you	have	learned	how	to	set	up	a	simple	grid	graph	and	how	to	calculate	paths	Pathfinding,	but	surely	there	must	be	a
way	to	get	those	paths	to	look	a	bit	smoother?
Sure	there	is.	Path	smoothing	and	simplification	scripts	are	called	Path	Modifiers	and	are	scripts	which	can	be	added	to	the
same	GameObject	as	the	Seeker.
The	most	straightforward	one	is	the	Simple	Smooth	modifier,	which	can	be	found	at	Menu	bar	→	Components	→	Pathfinding	→
Modifiers	→	Simple	Smooth.	Add	that	to	our	AI.
What	this	modifier	is	going	to	do	is	to	subdivide	the	path	a	number	of	times	until	each	segment	becomes	smaller	than	the	Max
Segment	Length	variable.	Then	it	will	smooth	the	path	by	moving	the	points	closer	to	each	other.	The	modifier	has	a	number	of
settings;	I	won't	go	through	all	of	them	here.	See	the	SimpleSmoothModifier
(https://arongranberg.com/astar/documentation/stable/simplesmoothmodifier.html)	documentation	for	more	info	about	each
variable.	For	this	tutorial	you	can	set	Max	Segment	Length	to,	say	1.	Iterations	to	5	and	Strength	to	0.25.	Experiment	with	it	to
get	good	values.
Now	press	play	again,	the	path	should	look	much	smoother,	just	as	we	wanted.

Warning
Smoothers	don't	usually	take	world	geometry	or	the	graph	into	account,	so	be	careful	with	applying	too	much	smoothing
since	that	could	cause	paths	to	pass	through	unwalkable	areas.

Another	good	modifier	to	use	is	the	FunnelModifier	(https://arongranberg.com/astar/documentation/stable/funnelmodifier.html)
which	will	simplify	the	path	a	great	deal.	This	modifier	is	almost	always	used	when	using	navmesh/recast	graphs.

https://arongranberg.com/astar/documentation/stable/custom_movement_script.html
https://arongranberg.com/astar/documentation/stable/aipath.html
https://arongranberg.com/astar/documentation/stable/richai.html
https://arongranberg.com/astar/documentation/stable/ailerp.html
https://arongranberg.com/astar/documentation/stable/movementscripts.html
https://arongranberg.com/astar/documentation/stable/aipath.html
https://arongranberg.com/astar/documentation/stable/aidestinationsetter.html
https://arongranberg.com/astar/documentation/stable/simplesmoothmodifier.html
https://arongranberg.com/astar/documentation/stable/funnelmodifier.html


Read	more	about	modifiers	on	the	page	Using	Modifiers
(https://arongranberg.com/astar/documentation/stable/modifiers2.html).

Logging	settings
Every	time	a	path	is	calculated	by	the	system,	it	can	optionally	be	logged	to	the	console.	This	can	be	a	big	help	in
understanding	what	the	system	is	doing	and	also	to	spot	performance	issues.	Logging	is	not	free,	however,	so	for	release	builds
it	is	recommended	that	you	disable	it.
You	can	change	the	logging	settings	under	the	A*	Inspector	→	Settings	→	Debug	tab.

Use	less	debugging	to	improve	performance	(a	bit)	or	just	to	get	rid	of	the	console	spam.	Use	more	debugging	(heavy)	if	you
want	more	information	about	what	the	pathfinding	scripts	are	doing.	The	InGame	option	will	display	the	latest	path	log	using
the	in-game	GUI.

Conclusion
That	was	the	end	of	the	Get	Started	tutorial	part	1.	I	hope	you	learned	something	from	it.	From	here	on,	you	can	explore	the
rest	of	the	documentation	or	dig	straight	into	the	project.	If	you	want	a	slightly	better	AI,	you	can	use	the	AIPath	script,	which	is
included	in	the	project.
You	can	continue	with	the	next	part	of	the	get	started	tutorial,	where	we	will	use	navmesh	graphs:	Using	navmeshes
(https://arongranberg.com/astar/documentation/stable/getstarted2.html)
You	can	also	take	a	look	in	the	sidebar;	there	you	will	find	a	number	of	tutorials	for	how	to	use	the	package.
Good	Luck!

This	is	an	excerpt	from	the	full	documentation.	You	can	view	the	full	documentation	here
(https://arongranberg.com/astar/documentation/stable).	Most	links	on	this	page	will	just	take	you	to	the	full	documentation.

https://arongranberg.com/astar/documentation/stable/modifiers2.html
https://arongranberg.com/astar/documentation/stable/getstarted2.html
https://arongranberg.com/astar/documentation/stable

