using UnityEngine; using Unity.Collections; using Unity.Jobs; using Unity.Burst; using Pathfinding.Util; using Pathfinding.Collections; namespace Pathfinding.Graphs.Navmesh.Voxelization.Burst { /// VoxelContour used for recast graphs. public struct VoxelContour { public int nverts; /// Vertex coordinates, each vertex contains 4 components. public int vertexStartIndex; /// Region ID of the contour public int reg; /// Area ID of the contour. public int area; } [BurstCompile(CompileSynchronously = true)] public struct JobBuildContours : IJob { public CompactVoxelField field; public float maxError; public float maxEdgeLength; public int buildFlags; public float cellSize; public NativeList outputContours; public NativeList outputVerts; public void Execute () { outputContours.Clear(); outputVerts.Clear(); int w = field.width; int d = field.depth; int wd = w*d; const ushort BorderReg = VoxelUtilityBurst.BorderReg; // NOTE: This array may contain uninitialized data, but since we explicitly set all data in it before we use it, it's OK. var flags = new NativeArray(field.spans.Length, Allocator.Temp, NativeArrayOptions.UninitializedMemory); // Mark boundaries. (@?) for (int z = 0; z < wd; z += field.width) { for (int x = 0; x < field.width; x++) { CompactVoxelCell c = field.cells[x+z]; for (int i = (int)c.index, ci = (int)(c.index+c.count); i < ci; i++) { ushort res = 0; CompactVoxelSpan s = field.spans[i]; if (s.reg == 0 || (s.reg & BorderReg) == BorderReg) { flags[i] = 0; continue; } for (int dir = 0; dir < 4; dir++) { int r = 0; if (s.GetConnection(dir) != CompactVoxelField.NotConnected) { int ni = field.cells[field.GetNeighbourIndex(x+z, dir)].index + s.GetConnection(dir); r = field.spans[ni].reg; } //@TODO - Why isn't this inside the previous IF if (r == s.reg) { res |= (ushort)(1 << dir); } } //Inverse, mark non connected edges. flags[i] = (ushort)(res ^ 0xf); } } } NativeList verts = new NativeList(256, Allocator.Temp); NativeList simplified = new NativeList(64, Allocator.Temp); for (int z = 0; z < wd; z += field.width) { for (int x = 0; x < field.width; x++) { CompactVoxelCell c = field.cells[x+z]; for (int i = c.index, ci = c.index+c.count; i < ci; i++) { if (flags[i] == 0 || flags[i] == 0xf) { flags[i] = 0; continue; } int reg = field.spans[i].reg; if (reg == 0 || (reg & BorderReg) == BorderReg) { continue; } int area = field.areaTypes[i]; verts.Clear(); simplified.Clear(); WalkContour(x, z, i, flags, verts); SimplifyContour(verts, simplified, maxError, buildFlags); RemoveDegenerateSegments(simplified); VoxelContour contour = new VoxelContour { vertexStartIndex = outputVerts.Length, nverts = simplified.Length/4, reg = reg, area = area, }; outputVerts.AddRange(simplified.AsArray()); outputContours.Add(contour); } } } verts.Dispose(); simplified.Dispose(); // Check and merge droppings. // Sometimes the previous algorithms can fail and create several outputContours // per area. This pass will try to merge the holes into the main region. for (int i = 0; i < outputContours.Length; i++) { VoxelContour cont = outputContours[i]; // Check if the contour is would backwards. var outputVertsArr = outputVerts.AsArray(); if (CalcAreaOfPolygon2D(outputVertsArr, cont.vertexStartIndex, cont.nverts) < 0) { // Find another contour which has the same region ID. int mergeIdx = -1; for (int j = 0; j < outputContours.Length; j++) { if (i == j) continue; if (outputContours[j].nverts > 0 && outputContours[j].reg == cont.reg) { // Make sure the polygon is correctly oriented. if (CalcAreaOfPolygon2D(outputVertsArr, outputContours[j].vertexStartIndex, outputContours[j].nverts) > 0) { mergeIdx = j; break; } } } if (mergeIdx == -1) { // Debug.LogError("rcBuildContours: Could not find merge target for bad contour "+i+"."); } else { // Debugging // Debug.LogWarning ("Fixing contour"); VoxelContour mcont = outputContours[mergeIdx]; // Merge by closest points. GetClosestIndices(outputVertsArr, mcont.vertexStartIndex, mcont.nverts, cont.vertexStartIndex, cont.nverts, out var ia, out var ib); if (ia == -1 || ib == -1) { // Debug.LogWarning("rcBuildContours: Failed to find merge points for "+i+" and "+mergeIdx+"."); continue; } if (!MergeContours(outputVerts, ref mcont, ref cont, ia, ib)) { //Debug.LogWarning("rcBuildContours: Failed to merge contours "+i+" and "+mergeIdx+"."); continue; } outputContours[mergeIdx] = mcont; outputContours[i] = cont; } } } } void GetClosestIndices (NativeArray verts, int vertexStartIndexA, int nvertsa, int vertexStartIndexB, int nvertsb, out int ia, out int ib) { int closestDist = 0xfffffff; ia = -1; ib = -1; for (int i = 0; i < nvertsa; i++) { //in is a keyword in C#, so I can't use that as a variable name int in2 = (i+1) % nvertsa; int ip = (i+nvertsa-1) % nvertsa; int va = vertexStartIndexA + i*4; int van = vertexStartIndexA + in2*4; int vap = vertexStartIndexA + ip*4; for (int j = 0; j < nvertsb; ++j) { int vb = vertexStartIndexB + j*4; // vb must be "infront" of va. if (Ileft(verts, vap, va, vb) && Ileft(verts, va, van, vb)) { int dx = verts[vb+0] - verts[va+0]; int dz = (verts[vb+2]/field.width) - (verts[va+2]/field.width); int d = dx*dx + dz*dz; if (d < closestDist) { ia = i; ib = j; closestDist = d; } } } } } public static bool MergeContours (NativeList verts, ref VoxelContour ca, ref VoxelContour cb, int ia, int ib) { // Note: this will essentially leave junk data in the verts array where the contours were previously. // This shouldn't be a big problem because MergeContours is normally not called for that many contours (usually none). int nv = 0; var startIndex = verts.Length; // Copy contour A. for (int i = 0; i <= ca.nverts; i++) { int src = ca.vertexStartIndex + ((ia+i) % ca.nverts)*4; verts.Add(verts[src+0]); verts.Add(verts[src+1]); verts.Add(verts[src+2]); verts.Add(verts[src+3]); nv++; } // Copy contour B for (int i = 0; i <= cb.nverts; i++) { int src = cb.vertexStartIndex + ((ib+i) % cb.nverts)*4; verts.Add(verts[src+0]); verts.Add(verts[src+1]); verts.Add(verts[src+2]); verts.Add(verts[src+3]); nv++; } ca.vertexStartIndex = startIndex; ca.nverts = nv; cb.vertexStartIndex = 0; cb.nverts = 0; return true; } public void SimplifyContour (NativeList verts, NativeList simplified, float maxError, int buildFlags) { // Add initial points. bool hasConnections = false; for (int i = 0; i < verts.Length; i += 4) { if ((verts[i+3] & VoxelUtilityBurst.ContourRegMask) != 0) { hasConnections = true; break; } } if (hasConnections) { // The contour has some portals to other regions. // Add a new point to every location where the region changes. for (int i = 0, ni = verts.Length/4; i < ni; i++) { int ii = (i+1) % ni; bool differentRegs = (verts[i*4+3] & VoxelUtilityBurst.ContourRegMask) != (verts[ii*4+3] & VoxelUtilityBurst.ContourRegMask); bool areaBorders = (verts[i*4+3] & VoxelUtilityBurst.RC_AREA_BORDER) != (verts[ii*4+3] & VoxelUtilityBurst.RC_AREA_BORDER); if (differentRegs || areaBorders) { simplified.Add(verts[i*4+0]); simplified.Add(verts[i*4+1]); simplified.Add(verts[i*4+2]); simplified.Add(i); } } } if (simplified.Length == 0) { // If there is no connections at all, // create some initial points for the simplification process. // Find lower-left and upper-right vertices of the contour. int llx = verts[0]; int lly = verts[1]; int llz = verts[2]; int lli = 0; int urx = verts[0]; int ury = verts[1]; int urz = verts[2]; int uri = 0; for (int i = 0; i < verts.Length; i += 4) { int x = verts[i+0]; int y = verts[i+1]; int z = verts[i+2]; if (x < llx || (x == llx && z < llz)) { llx = x; lly = y; llz = z; lli = i/4; } if (x > urx || (x == urx && z > urz)) { urx = x; ury = y; urz = z; uri = i/4; } } simplified.Add(llx); simplified.Add(lly); simplified.Add(llz); simplified.Add(lli); simplified.Add(urx); simplified.Add(ury); simplified.Add(urz); simplified.Add(uri); } // Add points until all raw points are within // error tolerance to the simplified shape. // This uses the Douglas-Peucker algorithm. int pn = verts.Length/4; //Use the max squared error instead maxError *= maxError; for (int i = 0; i < simplified.Length/4;) { int ii = (i+1) % (simplified.Length/4); int ax = simplified[i*4+0]; int ay = simplified[i*4+1]; int az = simplified[i*4+2]; int ai = simplified[i*4+3]; int bx = simplified[ii*4+0]; int by = simplified[ii*4+1]; int bz = simplified[ii*4+2]; int bi = simplified[ii*4+3]; // Find maximum deviation from the segment. float maxd = 0; int maxi = -1; int ci, cinc, endi; // Traverse the segment in lexilogical order so that the // max deviation is calculated similarly when traversing // opposite segments. if (bx > ax || (bx == ax && bz > az)) { cinc = 1; ci = (ai+cinc) % pn; endi = bi; } else { cinc = pn-1; ci = (bi+cinc) % pn; endi = ai; Memory.Swap(ref ax, ref bx); Memory.Swap(ref az, ref bz); } // Tessellate only outer edges or edges between areas. if ((verts[ci*4+3] & VoxelUtilityBurst.ContourRegMask) == 0 || (verts[ci*4+3] & VoxelUtilityBurst.RC_AREA_BORDER) == VoxelUtilityBurst.RC_AREA_BORDER) { while (ci != endi) { float d2 = VectorMath.SqrDistancePointSegmentApproximate(verts[ci*4+0], verts[ci*4+2]/field.width, ax, az/field.width, bx, bz/field.width); if (d2 > maxd) { maxd = d2; maxi = ci; } ci = (ci+cinc) % pn; } } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1 && maxd > maxError) { // Add space for the new point. simplified.ResizeUninitialized(simplified.Length + 4); // Move all points after this one, to leave space to insert the new point simplified.AsUnsafeSpan().Move((i+1)*4, (i+2)*4, simplified.Length-(i+2)*4); // Add the point. simplified[(i+1)*4+0] = verts[maxi*4+0]; simplified[(i+1)*4+1] = verts[maxi*4+1]; simplified[(i+1)*4+2] = verts[maxi*4+2]; simplified[(i+1)*4+3] = maxi; } else { i++; } } // Split too long edges float maxEdgeLen = maxEdgeLength / cellSize; if (maxEdgeLen > 0 && (buildFlags & (VoxelUtilityBurst.RC_CONTOUR_TESS_WALL_EDGES|VoxelUtilityBurst.RC_CONTOUR_TESS_AREA_EDGES|VoxelUtilityBurst.RC_CONTOUR_TESS_TILE_EDGES)) != 0) { for (int i = 0; i < simplified.Length/4;) { if (simplified.Length/4 > 200) { break; } int ii = (i+1) % (simplified.Length/4); int ax = simplified[i*4+0]; int az = simplified[i*4+2]; int ai = simplified[i*4+3]; int bx = simplified[ii*4+0]; int bz = simplified[ii*4+2]; int bi = simplified[ii*4+3]; // Find maximum deviation from the segment. int maxi = -1; int ci = (ai+1) % pn; // Tessellate only outer edges or edges between areas. bool tess = false; // Wall edges. if ((buildFlags & VoxelUtilityBurst.RC_CONTOUR_TESS_WALL_EDGES) != 0 && (verts[ci*4+3] & VoxelUtilityBurst.ContourRegMask) == 0) tess = true; // Edges between areas. if ((buildFlags & VoxelUtilityBurst.RC_CONTOUR_TESS_AREA_EDGES) != 0 && (verts[ci*4+3] & VoxelUtilityBurst.RC_AREA_BORDER) == VoxelUtilityBurst.RC_AREA_BORDER) tess = true; // Border of tile if ((buildFlags & VoxelUtilityBurst.RC_CONTOUR_TESS_TILE_EDGES) != 0 && (verts[ci*4+3] & VoxelUtilityBurst.BorderReg) == VoxelUtilityBurst.BorderReg) tess = true; if (tess) { int dx = bx - ax; int dz = (bz/field.width) - (az/field.width); if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen) { // Round based on the segments in lexilogical order so that the // max tesselation is consistent regardles in which direction // segments are traversed. int n = bi < ai ? (bi+pn - ai) : (bi - ai); if (n > 1) { if (bx > ax || (bx == ax && bz > az)) { maxi = (ai + n/2) % pn; } else { maxi = (ai + (n+1)/2) % pn; } } } } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1) { // Add space for the new point. //simplified.resize(simplified.size()+4); simplified.Resize(simplified.Length + 4, NativeArrayOptions.UninitializedMemory); simplified.AsUnsafeSpan().Move((i+1)*4, (i+2)*4, simplified.Length-(i+2)*4); // Add the point. simplified[(i+1)*4+0] = verts[maxi*4+0]; simplified[(i+1)*4+1] = verts[maxi*4+1]; simplified[(i+1)*4+2] = verts[maxi*4+2]; simplified[(i+1)*4+3] = maxi; } else { ++i; } } } for (int i = 0; i < simplified.Length/4; i++) { // The edge vertex flag is take from the current raw point, // and the neighbour region is take from the next raw point. int ai = (simplified[i*4+3]+1) % pn; int bi = simplified[i*4+3]; simplified[i*4+3] = (verts[ai*4+3] & VoxelUtilityBurst.ContourRegMask) | (verts[bi*4+3] & VoxelUtilityBurst.RC_BORDER_VERTEX); } } public void WalkContour (int x, int z, int i, NativeArray flags, NativeList verts) { // Choose the first non-connected edge int dir = 0; while ((flags[i] & (ushort)(1 << dir)) == 0) { dir++; } int startDir = dir; int startI = i; int area = field.areaTypes[i]; int iter = 0; while (iter++ < 40000) { // Are we facing a region edge if ((flags[i] & (ushort)(1 << dir)) != 0) { // Choose the edge corner bool isBorderVertex = false; bool isAreaBorder = false; int px = x; int py = GetCornerHeight(x, z, i, dir, ref isBorderVertex); int pz = z; // Offset the vertex to land on the corner of the span. // The resulting coordinates have an implicit 1/2 voxel offset because all corners // are in the middle between two adjacent integer voxel coordinates. switch (dir) { case 0: pz += field.width; break; case 1: px++; pz += field.width; break; case 2: px++; break; } int r = 0; CompactVoxelSpan s = field.spans[i]; if (s.GetConnection(dir) != CompactVoxelField.NotConnected) { int ni = (int)field.cells[field.GetNeighbourIndex(x+z, dir)].index + s.GetConnection(dir); r = (int)field.spans[ni].reg; if (area != field.areaTypes[ni]) { isAreaBorder = true; } } if (isBorderVertex) { r |= VoxelUtilityBurst.RC_BORDER_VERTEX; } if (isAreaBorder) { r |= VoxelUtilityBurst.RC_AREA_BORDER; } verts.Add(px); verts.Add(py); verts.Add(pz); verts.Add(r); flags[i] = (ushort)(flags[i] & ~(1 << dir)); // Remove visited edges // & 0x3 is the same as % 4 (for positive numbers) dir = (dir+1) & 0x3; // Rotate CW } else { int ni = -1; int nx = x + VoxelUtilityBurst.DX[dir]; int nz = z + VoxelUtilityBurst.DZ[dir]*field.width; CompactVoxelSpan s = field.spans[i]; if (s.GetConnection(dir) != CompactVoxelField.NotConnected) { CompactVoxelCell nc = field.cells[nx+nz]; ni = (int)nc.index + s.GetConnection(dir); } if (ni == -1) { Debug.LogWarning("Degenerate triangles might have been generated.\n" + "Usually this is not a problem, but if you have a static level, try to modify the graph settings slightly to avoid this edge case."); return; } x = nx; z = nz; i = ni; // & 0x3 is the same as % 4 (modulo 4) dir = (dir+3) & 0x3; // Rotate CCW } if (startI == i && startDir == dir) { break; } } } public int GetCornerHeight (int x, int z, int i, int dir, ref bool isBorderVertex) { CompactVoxelSpan s = field.spans[i]; int cornerHeight = (int)s.y; // dir + 1 step in the clockwise direction int dirp = (dir+1) & 0x3; unsafe { // We need a small buffer to hold regions for each axis aligned neighbour. // This requires unsafe, though. In future C# versions we can use Span. // // dir // X----> // dirp | // v // // // The regs array will contain the regions for the following spans, // where the 0th span is the current span. // 'x' signifies the position of the corner we are interested in. // This is the shared vertex corner the four spans. // It is conceptually at the current span's position + 0.5*dir + 0.5*dirp // // // 0 --------- 1 -> dir // | | // | x | // | | // 3 --------- 2 // // | dirp // v // var regs = stackalloc uint[] { 0, 0, 0, 0 }; regs[0] = (uint)field.spans[i].reg | ((uint)field.areaTypes[i] << 16); if (s.GetConnection(dir) != CompactVoxelField.NotConnected) { int neighbourCell = field.GetNeighbourIndex(x+z, dir); int ni = (int)field.cells[neighbourCell].index + s.GetConnection(dir); CompactVoxelSpan ns = field.spans[ni]; cornerHeight = System.Math.Max(cornerHeight, (int)ns.y); regs[1] = (uint)ns.reg | ((uint)field.areaTypes[ni] << 16); if (ns.GetConnection(dirp) != CompactVoxelField.NotConnected) { int neighbourCell2 = field.GetNeighbourIndex(neighbourCell, dirp); int ni2 = (int)field.cells[neighbourCell2].index + ns.GetConnection(dirp); CompactVoxelSpan ns2 = field.spans[ni2]; cornerHeight = System.Math.Max(cornerHeight, (int)ns2.y); regs[2] = (uint)ns2.reg | ((uint)field.areaTypes[ni2] << 16); } } if (s.GetConnection(dirp) != CompactVoxelField.NotConnected) { int neighbourCell = field.GetNeighbourIndex(x+z, dirp); int ni = (int)field.cells[neighbourCell].index + s.GetConnection(dirp); CompactVoxelSpan ns = field.spans[ni]; cornerHeight = System.Math.Max(cornerHeight, (int)ns.y); regs[3] = (uint)ns.reg | ((uint)field.areaTypes[ni] << 16); if (ns.GetConnection(dir) != CompactVoxelField.NotConnected) { int neighbourCell2 = field.GetNeighbourIndex(neighbourCell, dir); int ni2 = (int)field.cells[neighbourCell2].index + ns.GetConnection(dir); CompactVoxelSpan ns2 = field.spans[ni2]; cornerHeight = System.Math.Max(cornerHeight, (int)ns2.y); regs[2] = (uint)ns2.reg | ((uint)field.areaTypes[ni2] << 16); } } // Zeroes show up when there are no connections to some spans. E.g. if the current span is on a ledge. bool noZeros = regs[0] != 0 && regs[1] != 0 && regs[2] != 0 && regs[3] != 0; // Check if the vertex is special edge vertex, these vertices will be removed later. for (int j = 0; j < 4; ++j) { int a = j; int b = (j+1) & 0x3; int c = (j+2) & 0x3; int d = (j+3) & 0x3; // The vertex is a border vertex there are two same exterior cells in a row, // followed by two interior cells and none of the regions are out of bounds. bool twoSameExts = (regs[a] & regs[b] & VoxelUtilityBurst.BorderReg) != 0 && regs[a] == regs[b]; bool twoInts = ((regs[c] | regs[d]) & VoxelUtilityBurst.BorderReg) == 0; bool intsSameArea = (regs[c]>>16) == (regs[d]>>16); if (twoSameExts && twoInts && intsSameArea && noZeros) { isBorderVertex = true; break; } } } return cornerHeight; } static void RemoveRange (NativeList arr, int index, int count) { for (int i = index; i < arr.Length - count; i++) { arr[i] = arr[i+count]; } arr.Resize(arr.Length - count, NativeArrayOptions.UninitializedMemory); } static void RemoveDegenerateSegments (NativeList simplified) { // Remove adjacent vertices which are equal on xz-plane, // or else the triangulator will get confused for (int i = 0; i < simplified.Length/4; i++) { int ni = i+1; if (ni >= (simplified.Length/4)) ni = 0; if (simplified[i*4+0] == simplified[ni*4+0] && simplified[i*4+2] == simplified[ni*4+2]) { // Degenerate segment, remove. RemoveRange(simplified, i, 4); } } } int CalcAreaOfPolygon2D (NativeArray verts, int vertexStartIndex, int nverts) { int area = 0; for (int i = 0, j = nverts-1; i < nverts; j = i++) { int vi = vertexStartIndex + i*4; int vj = vertexStartIndex + j*4; area += verts[vi+0] * (verts[vj+2]/field.width) - verts[vj+0] * (verts[vi+2]/field.width); } return (area+1) / 2; } static bool Ileft (NativeArray verts, int a, int b, int c) { return (verts[b+0] - verts[a+0]) * (verts[c+2] - verts[a+2]) - (verts[c+0] - verts[a+0]) * (verts[b+2] - verts[a+2]) <= 0; } } }